homehome Home chatchat Notifications


Antimatter mystery gets a hint

Physics is still not sure what to make of antimatter; theoretically speaking, after the Big Bang, matter and antimatter were created in equal amounts. But if this is the case, then where is all the antimatter ? Matter vs antimatter An antiparticle has exactly the same mass as a particle, but a opposite electrical charge, […]

Mihai Andrei
July 2, 2011 @ 5:04 am

share Share

Physics is still not sure what to make of antimatter; theoretically speaking, after the Big Bang, matter and antimatter were created in equal amounts. But if this is the case, then where is all the antimatter ?

Matter vs antimatter

An antiparticle has exactly the same mass as a particle, but a opposite electrical charge,  and thus, if you would take an electron, for example, it is negatively charged. But if you take its counterpart, the antielectron (or positron), it would have the same properties, but a positive charge.

Given that pretty much everything we can see today is made out of matter, one can only ask where all the antimatter is. This is one of the biggest mysteries physics has to solve.

In 2010, researchers at the Tevatron accelerator claimed some extremely interesting results, reporting a small excess of matter over antimatter as particles decayed. Given the fact that each particle has a cousin antiparticle, and when the two meet, they annihilate each other with a blast, this small excess could prove crucial in the understanding of the situation.

New physics?

The results at Tevatron come as a result of collision between protons and antiprotons. The created shower also produced a number of different particles, and the team operating the Tevatron’s DZero detector first noticed a discrepancy in the decay of particles called B mesons. When they drew the line, they noticed a 1% excess of matter particles.

However, the thing is that there is always a certain level of uncertainty when conducting this kind of measurements, so it’s still too early to say that they were dealing with revolutionary results back then. However, this time they have much more data to work with, and they reduced the uncertainty to level of 3.9 sigma – equivalent to a 0.005%. But even so, this is not enough. Particle physics is extremely strict when it comes to what can be called a discovery – the “five sigma” level of certainty, or about a 0.00003% level of uncertainty.

Still, the results are quite convincing, and they will probably pass that margin of error pretty sure, thus giving one of today’s most desired scientific answers.

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.