homehome Home chatchat Notifications


Antimatter mystery gets a hint

Physics is still not sure what to make of antimatter; theoretically speaking, after the Big Bang, matter and antimatter were created in equal amounts. But if this is the case, then where is all the antimatter ? Matter vs antimatter An antiparticle has exactly the same mass as a particle, but a opposite electrical charge, […]

Mihai Andrei
July 2, 2011 @ 5:04 am

share Share

Physics is still not sure what to make of antimatter; theoretically speaking, after the Big Bang, matter and antimatter were created in equal amounts. But if this is the case, then where is all the antimatter ?

Matter vs antimatter

An antiparticle has exactly the same mass as a particle, but a opposite electrical charge,  and thus, if you would take an electron, for example, it is negatively charged. But if you take its counterpart, the antielectron (or positron), it would have the same properties, but a positive charge.

Given that pretty much everything we can see today is made out of matter, one can only ask where all the antimatter is. This is one of the biggest mysteries physics has to solve.

In 2010, researchers at the Tevatron accelerator claimed some extremely interesting results, reporting a small excess of matter over antimatter as particles decayed. Given the fact that each particle has a cousin antiparticle, and when the two meet, they annihilate each other with a blast, this small excess could prove crucial in the understanding of the situation.

New physics?

The results at Tevatron come as a result of collision between protons and antiprotons. The created shower also produced a number of different particles, and the team operating the Tevatron’s DZero detector first noticed a discrepancy in the decay of particles called B mesons. When they drew the line, they noticed a 1% excess of matter particles.

However, the thing is that there is always a certain level of uncertainty when conducting this kind of measurements, so it’s still too early to say that they were dealing with revolutionary results back then. However, this time they have much more data to work with, and they reduced the uncertainty to level of 3.9 sigma – equivalent to a 0.005%. But even so, this is not enough. Particle physics is extremely strict when it comes to what can be called a discovery – the “five sigma” level of certainty, or about a 0.00003% level of uncertainty.

Still, the results are quite convincing, and they will probably pass that margin of error pretty sure, thus giving one of today’s most desired scientific answers.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.

Physicists Say Time's Arrow Could Move in Two Directions at Once

The Universe doesn't care which direction time flows in.

What would happen if a (small) black hole passed through your body?

Imagine a supervillain attacking you with his unique superpower of creating small black holes. An invisible force zips through your body at unimaginable speed. You feel no push, no heat, yet, deep inside your body, atoms momentarily shift in response to the gravitational pull of something tiny yet immensely dense — a primordial black hole […]

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.