homehome Home chatchat Notifications


ISS's Alpha Magnetic Spectrometer is like an LHC in space - already boasting fantastic results

Alright, the analogy might not be the best. The Large Hadron Collider is a high energy particle accelerator, while the Alpha Magnetic Spectrometer is a state of the art particle detector, which traps high-energy charged particles called cosmic rays and analyzes them. You see, the AMS can practically perform the same functions as the LHC, only the high […]

Tibi Puiu
July 26, 2012 @ 2:01 pm

share Share

Alright, the analogy might not be the best. The Large Hadron Collider is a high energy particle accelerator, while the Alpha Magnetic Spectrometer is a state of the art particle detector, which traps high-energy charged particles called cosmic rays and analyzes them. You see, the AMS can practically perform the same functions as the LHC, only the high energy particles don’t need to be created – they’re harvested from nature, detecting high-energy particles “from the source”, which might eventually lead to tantalizing signs of dark energy or dark matter. In many respects, the AMS is better for science than the LHC, despite both are currently indisputable and dependent from one another.

The Alpha Magnetic Spectrometer, as a project, has been in the works for nearly two decades. After a number of delays, budget cuts and the likes, the seven-tonne giant was launched into space about Endeavour, the last shuttle mission, where it docked with the ISS as module some 18 months ago.

“It took more than 35 missions to build the International Space Station – very complicated space shuttle flights – to construct this incredible laboratory in space,” said Endeavour mission commander Mark Kelly told

“When we installed AMS, that was the last piece of the ISS, then the space station was complete. This is really the pinnacle of the science that ISS will do, in my opinion the most significant experiment we have on board.”

AMS – the pinnacle of space science

In fact the AMS was the last planned part of the International Space Station, making it fully complete after many years and resources invested. Last but not least, that is, as the AMS is the largest and most important experiment in space ever. Since it went into operation, the AMS has so far gathered some 18 billion “cosmic ray”; some of these might hold the key to unraveling the Universe’s mysteries.

Transition Radiation Detector determines highest-energy particle velocities  Silicon Trackers follow particle paths; how they bend reveals their charge  Permanent Magnet is core component of AMS and makes particles curve  Time-of-flight Counters determine lowest-energy particle velocities  Star Trackers scan star fields to establish AMS's orientation in space  Cerenkov Detector makes accurate velocity measurements of fast particles  Electromagnetic Calorimeter measures energy of impacting particles  Anti-coincidence Counter filters signal from unwanted side particles

Transition Radiation Detector determines highest-energy particle velocities
Silicon Trackers follow particle paths; how they bend reveals their charge
Permanent Magnet is core component of AMS and makes particles curve
Time-of-flight Counters determine lowest-energy particle velocities
Star Trackers scan star fields to establish AMS’s orientation in space
Cerenkov Detector makes accurate velocity measurements of fast particles
Electromagnetic Calorimeter measures energy of impacting particles
Anti-coincidence Counter filters signal from unwanted side particles

The team has already noted an excess of extremely high-energy positrons – the antimatter equivalent of electrons – and atomic nuclei at 9 teraelectronvolts (TeV) – higher even than the LHC can produce. The scientists involved in the project, however, aren’t too quick on publishing hasty results. The AMS collects hundreds of times per second, and a team of scientists at CERN is constantly monitoring particles 24/7 in shifts. So far, only a few percent of the data has been analyzed.

I have told my collaborators that in the next 40-50 years it is very unlikely people will be so foolish as to repeat this experiment, given the difficulty I ran into,” said Nobel laureate Sam Ting of the Massachusetts Institute of Technology (MIT) has led the project since its inception some 17 years ago.

“Therefore it’s extremely important when we publish a result, we publish it correctly, because otherwise you’ll certainly mislead physics and there’s no way to check us.”

Indeed, news from the AMS should be really interesting to follow in the coming years.

source: BBC

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.