homehome Home chatchat Notifications


A.I. masters control of delicate Nobel-winning physics experiment in under an hour

Lazy physicists from Australia programmed an artificial intelligence system to maneuver a delicate experiment with little to no oversight. The A.I. had to control an array of lasers that are used to cool atoms near absolute zero temperature, where the slightest hiccup could destroy the fragile state of matter of the atoms. But the machine performed marvelously.

Tibi Puiu
May 18, 2016 @ 2:33 pm

share Share

Lazy physicists from Australia programmed an artificial intelligence system to maneuver a delicate experiment with little to no oversight. The A.I. had to control an array of lasers that are used to cool atoms near absolute zero temperature, where the slightest hiccup could destroy the fragile state of matter of the atoms. But the machine performed marvelously.

The red cloud in the image's center is the Bose-Einstein Condensate. Credit: Stuart Hay, ANU

The red cloud in the image’s center is the Bose-Einstein Condensate. Credit: Stuart Hay, ANU

“I didn’t expect the machine could learn to do the experiment itself, from scratch, in under an hour,” said co-lead researcher Paul Wigley from the Canberra-based Australian National University (ANU). “A simple computer programme would have taken longer than the age of the Universe to run through all the combinations and work this out,” Wigley added.

The physicists’ experiment creates an exotic state of matter known as the  Bose-Einstein condensate, first predicted in the 1920s by Albert Einstein and the Indian physicist Satyendra Bose. It wasn’t until very late in 1995 that scientists were able to produce the necessary conditions for this extreme state of matter to occur, which involve cooling a gas with laser traps down to a fraction of a Kelvin.

At room temperature, atoms are incredibly fast and behave akin to billiard balls, bouncing off each other when they interact. As you lower the temperature (remember temperature reflects atomic agitation), atoms and molecules move slower. Eventually, once you get to about 0.000001 degrees above absolute zero, atoms become so densely packed they behave like one super atom, acting in unison.

Making Bose-Einstein condensate is an extremely difficult process, one that earned three physicists the Nobel prize in 2001 for their groundbreaking work. Even with a pretty solid plan laid out on how to make the condensate, physicists have to painstakingly tweak their process until it’s just right. A machine that can do this on the fly and by itself will thus save a lot of time, allowing the researchers to put their creative minds to better use, like solving difficult problems.

The  Australian National University researchers first set the stage for the machine by cooling a gas down to 1 microkelvin or a millionth of a degree above absolute zero using three lasers. They then handed the control over to the A.I. Over dozens of repetitions, the machine found the right balance to make Bose-Einstein condensate, as seen in  Scientific Reports.

“It did things a person wouldn’t guess such as changing one laser’s power up and down and compensating with another,” said Wigley.

Next, the team plans on tweaking the A.I. so it makes Bose-Einstein condensate even faster.

There are also some practical uses too. Bose-Einstein condensate is extremely sensitive to fluctuations of energy, which is why it’s so difficult to keep the gas in this state. It’s also what would make a device based on it very useful.

“You could make a working device to measure gravity that you could take in the back of a car, and the artificial intelligence would recalibrate and fix itself no matter what,” noted co-lead researcher Dr Michael Hush from UNSW ADFA.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.