homehome Home chatchat Notifications


Physicists make 2-D supersolid that flows without friction, a world first

It's like an ice cube flowing on water without friction.

Tibi Puiu
August 20, 2021 @ 3:23 pm

share Share

Credit: IQOQI Innsbruck/Harald Ritsch.

Almost 50 years since scientists imagined what supersolidity — a peculiar quantum state whereby atoms are arranged in a regular pattern but, at the same time, can flow frictionless — might look like, researchers have now demonstrated a two-dimensional supersolid quantum gas in the lab for the first time.

In a gas described by classical physics, you could theoretically label every single constituent atom of the gas and always know its position and momentum. However, you can never know this kind of information for each particle individually in a quantum gas.

At relatively high temperatures, the classical gas model is a good approximation for the behavior of the fluid. After all, engineers have been using classical physics equations for decades and our planes fly nicely and predictably, for instance. However, at very low temperatures approaching absolute zero, atoms and molecules slow to a crawl, and fluid behavior is more accurately described as a quantum gas — a behavior that can be quite challenging to wrap one’s head around.

For instance, at 0.000001 degrees above absolute zero, atoms become so densely packed they behave like one super atom, acting in unison. Atoms can form an exotic form of matter called Bose-Einstein condensate (BEC), also known as the fifth state of matter, in which individual atoms are completely delocalized. This means that the same atom exists at each point within the condensate at any given time, something that makes no sense from a classical physics perspective. It is what it is.

Quantum fluids like BECs tend to exhibit some “quantum” macroscopic behaviors such as superfluidity (fluid flow with zero viscosity) or superconductivity (electrical flow with zero resistance). Apparently, there’s also such a thing as supersolids, bizarre materials whose atoms are arranged in an orderly lattice but which, nevertheless, flow without friction.

In 2019, researchers led by Francesca Ferlaino, a physicist at the University of Innsbruck in Austra, demonstrated a supersolid state in an ultracold quantum gas of magnetic atoms for the first time. However, this effort could only attain supersolid states in a string of one-dimensional droplets. Now, the researchers have pushed the envelope by extending this phenomenon to two dimensions.

 “Normally, you would think that each atom would be found in a specific droplet, with no way to get between them,” says Matthew Norcia of Francesca Ferlaino’s team.

“However, in the supersolid state, each particle is delocalized across all the droplets, existing simultaneously in each droplet. So basically, you have a system with a series of high-density regions (the droplets) that all share the same delocalized atoms.”

The 2-D crystal-like structure is locked in a rigid structure but also delocalized at the same time, a phenomenon that is made possible strong polarity of magnetic ultra-chilled atoms. In doing so, the physicists have created a solid structure with the properties of a superfluid.

Like any respectable quantum physics experiment, this research opens up more questions than it answers. For instance, it’s not clear if it’s possible to make supersolids at a larger scale.

The findings appeared in the journal Nature.

share Share

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

Climate Change Is Breaking the Insurance Industry

Climate related problems, from storms to health issues, are causing a wave of change in the insurance industry.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.

A Lawyer Put a Cartoon Dragon Watermark on Every Page of a Court Filing and The Judge Was Not Amused

A Michigan judge rebukes lawyer for filing documents with cartoon dragon watermark

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

A bold new theory could bridge quantum physics and gravity at last.

America’s Cities Are Quietly Sinking. Here's Why

Land subsidence driven by groundwater overuse is putting millions at risk.