homehome Home chatchat Notifications


Cheap perovskite tandem solar cell breaks new world record at 30% efficiency

A crystal known to science for more than a century has only in recent years become recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially. In just a few years of development, rated efficiency in the […]

Tibi Puiu
December 11, 2020 @ 8:35 pm

share Share

The schematic structure of the tandem solar cell stack in 3D. Credit: Eike Koehnen/HZB.

A crystal known to science for more than a century has only in recent years become recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially. In just a few years of development, rated efficiency in the lab for perovskite solar cells soared from 3.8% to nearly 20%. Now, scientists at Helmholtz-Zentrum Berlin (HZB) have paired perovskite with silicon in a hybrid solar cell that harvested photons with an impressive 29.15% efficiency — a new world record that may propel the industry to new heights.

Solar cells convert incoming photons into electricity by exploiting the electron-hole pair generation and recombination. When photons come in contact with the semiconducting material, and if their energy falls into the semiconductor bandgap, then an electron is offset, leaving a gap in the atom. The electron travels from atom to atom within the material, each time leaving behind a hole and occupying holes downstream until it eventually reaches an electrode and has its charge transferred to a circuit. This is when electricity is finally generated.

The key is to have electrons moving for as long as possible, and thanks to its diffusing capabilities, perovskite can theoretically generate more electricity.  Perovskite solar cells have many distinct advantages over traditional silicon cells. Firstly, the fabrication of perovskite photovoltaics is much cheaper and simpler than silicon photovoltaic cell production. Additionally, perovskite cells have a higher bandgap than traditional silicon or thin-film cells.

Because perovskite thin films are transparent, they can be placed on top of lower bandgap cells like silicon. The result is a hybrid or “tandem” photovoltaic system.  Stacking two solar cells one on top of the other in this manner allows a larger portion of solar energy to be converted into electricity.

One of the most common solar panel myths is that solar energy is expensive. But according to the International Energy Agency, solar is now ‘the cheapest electricity in history’. Tandem solar cells will dramatically lower both the price of installation and your electrical bill even further.

The tandem solar cell was developed at a laboratory scale of one square centimeter. However, scaling up is possible. Credit: Eike Köhnen/HZB.

More than 50 years ago, William Shockley and Hans-Joachim Queisser discovered the Shockley-Queisser limit, which is the efficiency ceiling of solar cells with only one single layer. For both silicon and perovskite, the theoretical limit is around 30%. For tandem cells the theoretical limit is about 35%.

However, in the real world single-layer silicon or perovskite solar cells usually don’t convert more than 20% of the solar energy they receive. This is why the new tandem cell developed in Germany — which uses a perovskite composition with a 1.68-eV band gap — is so impressive, clocking in nearly 30% efficiency, just 5% shy of the absolute theoretical limit.

The solar cell developed by the researchers led by Steve Albrecht and Bernd Stannowski was tested in the lab on a sample measuring only 0.2 cm by 0.2 cm (1 cm), but it should be quite easy to scale up the size.  Next, the HZB team wants to break the 30% efficiency barrier. Albrecht says that initial ideas for this are already under discussion.

The findings appeared in the journal Science.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

Superhot Rock Energy Could Provide Enough Power to Fuel the U.S. Thousands of Times Over

Could next-generation geothermal energy finally fulfill its promise of ridding us of fossil fuels for good?