homehome Home chatchat Notifications


Cheap perovskite tandem solar cell breaks new world record at 30% efficiency

A crystal known to science for more than a century has only in recent years become recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially. In just a few years of development, rated efficiency in the […]

Tibi Puiu
December 11, 2020 @ 8:35 pm

share Share

The schematic structure of the tandem solar cell stack in 3D. Credit: Eike Koehnen/HZB.

A crystal known to science for more than a century has only in recent years become recognized for its use in harvesting solar power. Since the first successful usage of perovskite in solar cells in 2009, the advances in the field have grown exponentially. In just a few years of development, rated efficiency in the lab for perovskite solar cells soared from 3.8% to nearly 20%. Now, scientists at Helmholtz-Zentrum Berlin (HZB) have paired perovskite with silicon in a hybrid solar cell that harvested photons with an impressive 29.15% efficiency — a new world record that may propel the industry to new heights.

Solar cells convert incoming photons into electricity by exploiting the electron-hole pair generation and recombination. When photons come in contact with the semiconducting material, and if their energy falls into the semiconductor bandgap, then an electron is offset, leaving a gap in the atom. The electron travels from atom to atom within the material, each time leaving behind a hole and occupying holes downstream until it eventually reaches an electrode and has its charge transferred to a circuit. This is when electricity is finally generated.

The key is to have electrons moving for as long as possible, and thanks to its diffusing capabilities, perovskite can theoretically generate more electricity.  Perovskite solar cells have many distinct advantages over traditional silicon cells. Firstly, the fabrication of perovskite photovoltaics is much cheaper and simpler than silicon photovoltaic cell production. Additionally, perovskite cells have a higher bandgap than traditional silicon or thin-film cells.

Because perovskite thin films are transparent, they can be placed on top of lower bandgap cells like silicon. The result is a hybrid or “tandem” photovoltaic system.  Stacking two solar cells one on top of the other in this manner allows a larger portion of solar energy to be converted into electricity.

One of the most common solar panel myths is that solar energy is expensive. But according to the International Energy Agency, solar is now ‘the cheapest electricity in history’. Tandem solar cells will dramatically lower both the price of installation and your electrical bill even further.

The tandem solar cell was developed at a laboratory scale of one square centimeter. However, scaling up is possible. Credit: Eike Köhnen/HZB.

More than 50 years ago, William Shockley and Hans-Joachim Queisser discovered the Shockley-Queisser limit, which is the efficiency ceiling of solar cells with only one single layer. For both silicon and perovskite, the theoretical limit is around 30%. For tandem cells the theoretical limit is about 35%.

However, in the real world single-layer silicon or perovskite solar cells usually don’t convert more than 20% of the solar energy they receive. This is why the new tandem cell developed in Germany — which uses a perovskite composition with a 1.68-eV band gap — is so impressive, clocking in nearly 30% efficiency, just 5% shy of the absolute theoretical limit.

The solar cell developed by the researchers led by Steve Albrecht and Bernd Stannowski was tested in the lab on a sample measuring only 0.2 cm by 0.2 cm (1 cm), but it should be quite easy to scale up the size.  Next, the HZB team wants to break the 30% efficiency barrier. Albrecht says that initial ideas for this are already under discussion.

The findings appeared in the journal Science.

share Share

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.

A New Study Reveals AI Is Hiding Its True Intent and It's Getting Better At It

The more you try to get AI to talk about what it's doing, the sneakier it gets.

For the first time ever, wind and solar produced more electricity than coal in the US

The "Age of Electricity" is here.

Cat Owners Wanted for Science: Help Crack the Genetic Code of Felines

Cats are beloved family members in tens of millions of households, but we know surprisingly little about their genes.