homehome Home chatchat Notifications


Scientists make paralyzed mice walk again, in groundbreaking treatment

The groundbreaking treatment could soon be trialed on humans.

Mihai Andrei
January 25, 2021 @ 6:07 pm

share Share

A team of German researchers have achieved something once thought impossible: they’ve enabled mice paralyzed after spinal cord injuries to walk again. The designer protein (a cytokine) could be used to regenerate injured nerves in the spinal cord.

Neurons don’t naturally regenerate their axons (the long slender projections that conduct electrical impulses). So in the case of an injury that severs these axons, the damage was thought to be permanent. For decades, researchers have looked for a way to repair these connections, but haven’t had much success — until recently.

In 2013, neuroscientists in Germany published a study suggesting that a signaling protein (cytokine) could promote regeneration of optic nerve axons. But the study was carried out in lab cultures, not in real mice.

Breaking new ground

Now, the approach has been demonstrated in real mice. The team of researchers from Ruhr University Bochum administered the treatment to paralyzed rodents. After two to three weeks, the rats started walking.

The treatment is essentially an injection of genetic information that instructs the brain to produce the protein (called hyper-interleukin-6). This gene therapy is administered just one time, and the protein is then distributed via branching axons to even the distant, inaccessible parts of the central nervous system.

This is one of the main achievements of the work — that it not only stimulates the nerve cells it reaches to produce the protein, but that it is also carried farther (through the brain) to inaccessible parts. So with a relatively small injection, they can stimulate large parts of the brain, researchers say.

The team is now investigating if the treatment can be improved in any way, such as grafting to the spinal injury site. After these trials, and after a satisfactory form is reached, the treatment will then be trialed on larger mammals (such as pigs, dogs, or primates). If it is also successful, the treatment could then be trialed on humans, if it is proven safe.

The study “Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice” has been published in Nature Communications.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.