homehome Home chatchat Notifications


A new study says oxygen buildup on Earth was "inevitable," and maybe on other planets, too

The findings offer renewed hope of finding oxygen on alien worlds.

Alexandru Micu
December 12, 2019 @ 11:43 pm

share Share

While the history of oxygen on Earth is believed to have started with microorganisms or plate tectonics, a new paper reports that this may not be the case.

Image via Pixabay.

The study suggests that the distinct oxygenation events that shaped the Earth’s atmosphere into what it is today may have happened spontaneously, rather than through particularities of our planet (such as biological and tectonic activity). The findings give new insight into the possible history of our planet and offer renewed hope of finding oxygen on alien worlds.

Self-oxygenating?

“Based on this work, it seems that oxygenated planets may be much more common than previously thought, because they do not require multiple — and very unlikely — biological advances, or chance happenings of tectonics,” says study lead author Lewis Alcott, a postgraduate researcher in the School of Earth and Environment at Leeds.

“This research really tests our understanding of how the Earth became oxygen rich, and thus able to support intelligent life.”

Until roughly 2.4 billion years ago, Earth’s atmosphere held no meaningful levels of oxygen. This is due to the gas’s high chemical reactivity — it will bind with almost everything, scrubbing it out of the air. However, that’s when the first of three oxygenation events in our planet’s history occurred.

The first is known as the “Great Oxidation Event”. Subsequent oxygenation events occurred around 800 million years ago and 450 million years ago, leading to the concentrations of atmospheric oxygen of today.

In order to understand how it came to be, the team modified a well-established model of Earth’s marine biogeochemistry to make it run during the entire history of the planet. This model, they report, also produced three different oxygenation events all by itself. This, the team explains, strongly suggests that that beyond early photosynthetic microbes and the initiation of plate tectonics — both of which were established by around three billion years ago — it was simply a matter of time before oxygen would reach the necessary level to support complex life.

While previous research into the appearance of oxygen in Earth’s atmosphere focused on biological revolutions (where life such as algae essentially ‘bioengineers‘ oxygen-rich atmospheres) and tectonic revolutions (the generation of oxygen through volcanic processes), this study highlighted a series of feedback between the global phosphorus, carbon and oxygen cycles. These three together are capable of rapidly shifting ocean and atmospheric oxygen levels without any input from life or tectonics, the team explains. The transitions are driven by the way the marine phosphorus cycle responds to changing oxygen levels, and how this impacts photosynthesis, which requires phosphorus.

The results should bolster our hopes of finding alien planets with oxygen gas present in their atmosphere. While this isn’t a prerequisite for life, it is, to the best of our understanding, essential for the evolution of large, complex organisms — which require a lot of energy.

“Our model suggests that oxygenation of the Earth to a level that can sustain complex life was inevitable, once the microbes that produce oxygen had evolved,” explains study co-author Professor Simon Poulton, also from the School of Earth and Environment at Leeds.

“Our work shows that the relationship between the global phosphorus, carbon and oxygen cycles is fundamental to understanding the oxygenation history of the Earth. This could help us to better understand how a planet other than our own may become habitable,” adds Dr Benjamin Mills, senior author of the study.

The paper “Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling” has been published in the journal Science.

share Share

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

The flower from King Tut's tomb is flooding the internet but scientists say it's fake (thanks, reddit!)

The Egyptian blue lotus sold online isn't what you think. The real story behind this mythical plant is much more interesting though.