homehome Home chatchat Notifications


Whales as Ecological Engineers

Given the sheer size of whales, it should be no surprise that they make some very important contributions to ecosystems.

Dragos Mitrica
December 13, 2016 @ 8:16 pm

share Share

whales

Credit: Pixabay.

Given the sheer size of whales, it should be no surprise that they make some very important contributions to ecosystems. What you may find surprising is the form that some of these contributions take. When we think of ecological engineers we tend to think of elephants, beavers, and corals, but the open ocean is also a fluid system where whales hold significant influence.

There is a tendency for nutrients in the form of biological material to slowly sink away from the surface into deep ocean environments. This downward migration of debris is referred to as a biological pump, and the debris itself is called marine snow. The nutrients in marine snow can become tied up in ocean floor sediments or dissolved in water that may take decades, if not centuries, to resurface. Consequently, ecosystems at the surface of the ocean are often nutrient-poor, whereas cold, deep water is often nutrient-rich.

It turns out that whales help to even the balance by a simple mechanism called a whale pump. They feed at varying depths, but they seem to defecate almost exclusively at the surface. These massive clouds of poop provide a big boost of iron and nitrogen to the ecosystem, and since whale excrement is mostly liquid, those nutrients are more likely to remain in suspension than sink. For a species that feeds at great depths, such as sperm whales, this pump effect would be very pronounced.

The whale pump phenomenon was first formally observed in 2010, so we are still honing our understanding of it. Quantitative estimations so far confirm that they transport sufficient nutrients to significantly enhance the productivity of surface-water environments (Roman and McCarthy 2010).

journal.pone.0013255.g001

The biological pump transports nutrients away from the surface whereas the whale pump brings them back. (Roman and McCarthy 2010)

Whales don’t just engineer ecosystems; They create them. When a whale dies, it’s carcass sometimes descends all the way to the ocean floor. Within days of it’s arrival, scavengers will have converged from far and wide for a feast.

There are various stages that whale fall ecosystems progress through. Initially, there is a swarm of fish, sharks, and crabs that are capable of tearing through the tough blubber. As the carcass becomes more degraded, most of the larger organisms depart leaving the smaller scavengers like starfish to consume the residual tissues. Eventually, only bones remain, along with the bacteria, worms, and clams they support. There isn’t a clear consensus on how long whale falls persist, but 10-20 years seems to be a safe estimation.

The diversity found at whale falls rivals that of hydrothermal vents (Smith and Baco 2003), and whale falls are almost certainly more abundant. Unfortunately, in part due to the difficulty of locating and accessing them they haven’t been particularly well studied. What is clear is that these are one-of-a-kind ecosystems, and their abundance is directly tied to that of whales.

Whale populations have suffered greatly in recent centuries, largely thanks to the advent of whaling, and have never fully recovered. By conservative estimates, the historical global population was 6 times greater than it is today (Roman and Palumbi 2003). With their unique ecological contributions taken into consideration, this dramatic decline is likely to have had profound effects throughout the oceans. Therefore, it may be wise to rethink what we consider to be the natural state of our oceans.

References:

Roman, Joe, and Stephen R. Palumbi. “Whales before whaling in the North Atlantic.” science 301.5632 (2003): 508-510.

Roman, Joe, and James J. McCarthy. “The whale pump: marine mammals enhance primary productivity in a coastal basin.” PloS one 5.10 (2010): e13255.

Smith, Craig R., and Amy R. Baco. “Ecology of whale falls at the deep-sea floor.” Oceanography and marine biology 41 (2003): 311-354.

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.