homehome Home chatchat Notifications


Ocean acidification may be even worse for corals than previously thought

Sorry, no good news.

Mihai Andrei
February 15, 2017 @ 6:42 pm

share Share

Corals and especially the Great Barrier Reef (GBR) is at a much higher risk due to ocean acidification, a new study has found. The finding highlights the most vulnerable regions to the phenomenon, something which is essential for future conservation measures.

Simulated colour of the ocean over the Great Barrier Reef. Images are constructed by combining the optically active constituents in the water simulated by the eReefs models. Green hues represent phytoplankton blooming, dark blues the deep ocean waters, and browns the sediments. Credit: Mathieu Mongin.

Simulated color of the ocean over the Great Barrier Reef. Images are constructed by combining the optically active constituents in the water simulated by the eReefs models. Green hues represent phytoplankton blooming, dark blues the deep ocean waters, and browns the sediments. Credit: Mathieu Mongin.

Some call it “the evil twin of global warming”, while others call it “the other CO2 problem” – ocean acidification is often underlooked, although it threatens to do massive damage to the ocean’s inhabitants.

How it happens

When we emit carbon dioxide (CO2) into the atmosphere, not all of it stays there as a greenhouse gas. An estimate 30-40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers, and lakes. Due to its chemical characteristics, much of it interacts with water to form carbonic acid. Some of these extra carbonic acid molecules react with a water molecule to give a bicarbonate ion and a hydronium ion, thus increasing ocean acidity (H+ ion concentration).

Since the industrial revolution began, it is estimated that surface ocean pH has dropped by slightly more than 0.1 units on the logarithmic scale of pH, representing about a 29% increase in H+. This is already causing massive problems, and researchers believe the worst is yet to come.

Why this matters – a lot

There’s not a creature in the oceans that is unaffected by this increase in acidification. Depressing metabolic rates in jumbo squid, depressing the immune responses of blue mussels, and coral bleaching are just a few in a sea of problems. But the largest issue is with calcifying organisms.

Many of the ocean’s creatures have carbonate shells – they rely on synthesizing the calcium and carbon shell. The thing is, the more acidic the environment is, the higher the concentration of calcium needed to synthesize the shell. In other words, the more acidification in the oceans, the harder it is for animals to create their shells.

Corals typically build their skeletons with aragonite, a form of calcium carbonate (CaCO3) so they fall into this category. Atmospheric CO2 is altering the chemistry of the sea water, so that CaCO3 is less able to be deposited from solution. This implies that the so-called ‘aragonite saturation state’ of seawater, a measure of the ability of CaCO3 to be deposited, is being progressively reduced.

What the study found

Like most processes that happen on a global scale, there is a great deal of heterogeneity between different areas. Mathieu Mongin and his colleagues from CSIRO Oceans and Atmosphere in Australia combined modeled data with field observations to determine how this variability is expressed for the GBR. The authors show that there is up to about 50% more spatial variability in aragonite saturation levels than previously thought and that this variability is mostly governed by the depletion of carbonate ions through coral growth upstream (mainly in reefs in the north and along the edge of the GBR). Southern reefs are at a much higher risk than previously anticipated.

However authors warn that this is just the picture painted by the acidification – there are also other factors to be taken into consideration, especially human pressures. Still, this is very concerning news. More variability doesn’t bode well when they factored in models of climate change over the next century. Even the best possible future carbon emissions scenario may produce significant losses on the Great Barrier Reef, the researchers write.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Over 70% of the world's aquifers could be tainted by 2100

Over 2.5 billion people depend on aquifers for fresh water, but rising seas and climate change are pushing saltwater into these crucial reserves.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.

Trained Dogs Can Sniff Out Canine Bladder Cancer with Impressive Accuracy

Dogs have been successfully trained to detect one of the most common dog cancers with 92% specificity.