homehome Home chatchat Notifications


Mysterious objects deep in space may replace Planet 9 theory

An icy disk of smaller objects might be a better explanation.

Robert Trevelyan
January 28, 2019 @ 2:24 pm

share Share

Scientists have suggested a different explanation of the effects caused by Planet 9, the hypothesised supermassive planet hiding beyond Neptune.

Artist impression of the hypothetical 'Planet 9'. Credit: Wikimedia Commons.

Artist impression of the hypothetical ‘Planet 9’. Credit: Wikimedia Commons.

In the last few years, scientists have predicted the presence of a large, hidden celestial body, known as Planet 9, which may be causing disturbances in the outer reaches of our solar system. Now, new research from the Universities of Cambridge and Beirut has suggested something entirely different is out there.

Since the discovery of Neptune in the mid 19th century, there have been predictions of other vast objects concealed farther out in the cosmic gloom. In recent decades scientists have observed strange behaviours in some of the TNOs (Trans-Neptune Objects) orbiting the Sun that have so far evaded explanation.

There are currently 30 TNOs recorded by astronomers, Pluto amongst them. They are minor planetoids residing beyond Neptune and, like Pluto, some of their orbits are distorted by an enigmatic force – in some cases by as much as 30% ‘downwards’. Some TNOs are even moving through space in the opposite direction to the rest. Such phenomena do not correlate with our assumed 8 planet model of the solar system, and has led researchers in a quest for answers.

Recently in 2016, Caltech astronomers Konstantin Batygin and Mike Brown proposed a theory that a massive planet, 10 times the size of Earth, was lying concealed in the depths of our solar system. Far beyond Neptune, Planet 9 (or Planet X as termed colloquially) would receive barely any light to reflect, making any detection from Earth extremely difficult. Its considerable bulk would also exert a strong gravitational force, dislodging objects from the Kuiper Belt, warping their orbits, and even causing the Sun to wobble slightly on its axis.

But a new theory published in Astronomical Journal offers an alternative and, as co-author and Cambridge PhD student Antranik Sefilian terms it, a “less dramatic and perhaps more natural” solution.

Sefilian and his colleagues suggest that combined gravitational forces from a rotating, icy disc of smaller objects orbiting the Sun are the cause of much of the distortion observed in the outer solar system.

In a statement, Sefilian explained: “If you remove Planet 9 from the model and instead allow for lots of small objects scattered across a wide area, collective attractions between those objects could just as easily account for the eccentric orbits we see in some TNOs.”

The new study has not been without its opponents. Planet 9’s original theorist, Mike Brown, criticised the idea, highlighting the improbability for a disc of objects to survive within a dynamic solar system for billions of years. In addition, Brown said that “a ring of objects would be much easier to find than a singular planet, yet there is no evidence that such a thing exists.”

Sefilian and his colleagues remain convinced, however, and also alluded to the struggles the team had faced during their investigations.

“When observing other systems, we often study the disc surrounding the host star to infer the properties of any planets in orbit around it. The problem is when you’re observing the disc from inside the system, it’s almost impossible to see the whole thing at once. While we don’t have direct observational evidence for the disc, neither do we have it for Planet 9, which is why we’re investigating other possibilities. Nevertheless, it is interesting to note that observations of Kuiper belt analogues around other stars, as well as planet formation models, reveal massive remnant populations of debris.”

However, with the recent discoveries of other dwarf planets, such as the ‘Goblin’, ‘Sedna’ and ‘Farout’ at the edge of the solar system, Sefilian remains open to the prospect of both the icy disc and Planet 9 coexisting.

“It’s also possible that both things could be true – there could be a massive disc, and a ninth planet.”

With more research from astronomers like Sefilian and Brown, hopefully the coming years will shed more light on what exactly lurks around the furthest realms of our solar system.

share Share

Pluto and its Moon Charon Formed Through a Cosmic "Kiss and Capture"

Until now, the thinking was that Pluto and Charon formed like Earth and our Moon. New research has flipped that script.

Earth Might Have Had a Ring System Like Saturn Millions of Years Ago

The ring might have acted like a giant sunshade, causing a cooling effect that might have unleashed an ice age.

Local governments are using AI without clear rules or policies, and the public has no idea

In 2017, the city of Rotterdam in the Netherlands deployed an artificial intelligence (AI) system to determine how likely welfare recipients were to commit fraud. After analysing the data, the system developed biases: it flagged as “high risk” people who identified as female, young, with kids, and of low proficiency in the Dutch language. The […]

The 12 Smartest Dinosaurs: The Top Brainy Beasts of the Mesozoic

A rundown of some of the most interesting high-IQ dinos.

The Billion-Year Journey That Shaped the Universe We Know Today

The revolutionary James Webb Space Telescope and next-gen radio telescopes are probing what’s known as the epoch of reionization. It holds clues to the first stars and galaxies, and perhaps the nature of dark matter.

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

A giant volcano spanning 280 miles and taller than Mt. Everest was discovered on Mars

Noctis Mons marks a monumental volcanic discovery on Mars, reshaping our understanding of the Red Planet's geology.

Microplastics Discovered in Human Brain Tissue: What Are The Health Risks?

From the air we breathe to the water we drink, microplastics infiltrate every corner of our lives—but what happens when they cross into our brains?

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.