homehome Home chatchat Notifications


The new safe face of nuclear energy

There seems to be a global trend against atomic energy, even though coal is much, much more dangerous in the long run. Germany, for example, has announced giving up all of its nuclear energy until 2022, in what has been called by many a rash and uncalculated move. However, on the other hand, other people […]

Mihai Andrei
July 22, 2011 @ 6:54 am

share Share

There seems to be a global trend against atomic energy, even though coal is much, much more dangerous in the long run. Germany, for example, has announced giving up all of its nuclear energy until 2022, in what has been called by many a rash and uncalculated move. However, on the other hand, other people are going for a different, more sane approach.

Kirk Sorensen believes safe nuclear power can contribute significantly to the world’s energy future – provided that reactors run on liquid thorium fuel instead of solid uranium, like it is done today. Showing the courage and determination behind his claims, he launched his own company, called Flibe Energy, which aims to start the first thorium reactors in 5 to 8 years.

Sorensen claims he also wants to revefine the general opinion on nuclear energy, showing how relatively clean and cost effective it is, contrary to the popular belief, which fears nuclear waste and nuclear power accidents. This mission is extremely tougher after the incidents which took place at the Fukushima plant in Japan.

“In the 40s and 50s they had an expansive definition of what nuclear power was – it wasn’t just solid fuel uranium reactors,” said Sorensen, who is Flibe’s president. “But that’s what it has come to mean now.”

What is ironic is that Thorium lost the battle against Uranium because it doesn’t have any lethal waste produts, like Uranium has Plutonium for example; thus, the waste couldn’t be used for military purposes, which was a clear goal during the Cold War years. Today, other countries, especially China and India are pursuing Thorium reactors.

Although in some cases Thorium does produce Plutonium as a waste product itself, the waste is less hazardous than other mixes of plutonium waste and there is much less of it. Also, Thorium based fuels are much more effective than Uranium, so the same amount of energy could be produced with less fuel.

“The hotter you can get, the more efficiently you can turn heat into electricity,” said Sorensen. “Typical reactors today, they only get about one third conversion efficiency. We can get about half.” He also claims that in his design, thorium “isobreeds”, meaning it creates as much fissile fuel as it burns up.

Of course, perhaps the most powerful enemy he will have to face is the nuclear supply chain which is heavily vested in solid uranium 235. But this seems like a very healthy move, and one we should definitely keep an eye out in the following years.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

Professors should probably start changing how they evaluate students.