homehome Home chatchat Notifications


World's fastest camera captures 10 trillion frames per second

The unprecedented scale of imaging can record even the slightest changes in the behavior of light.

Tibi Puiu
October 15, 2018 @ 6:20 pm

share Share

Thought your iPhone’s camera can shoot sick slow-mos? Here’s something a bit more impressive.

Credit: INRS.

Credit: INRS.

Researchers at Caltech and L’Institut national de la recherche scientifique (INRS) devised the world’s fastest camera, which can shoot an incredible 10 trillion frames per second. It’s so fast that it can capture the interactions between matter and light at the nanoscale. The new camera more than doubles the number of frames per second set by the previous record holder, a device developed by researchers in Sweden.

T-CUP, officially the world’s fastest camera, is based on the ‘Compressed Ultrafast Photography’ technology. It works by combining a femtosecond streak camera and a static camera. A data acquisition technique called Radon transformation rounds up the setup.

Such ultra-fast cameras will prove useful to physicists looking to probe the nature of light and how it travels. Other potential applications include medicine and engineering.

“We knew that by using only a femtosecond streak camera, the image quality would be limited. So to improve this, we added another camera that acquires a static image. Combined with the image acquired by the femtosecond streak camera, we can use what is called a Radon transformation to obtain high-quality images while recording ten trillion frames per second,” said Lihong Wang, the Bren Professor of Medical Engineering and Electrical Engineering at Caltech.

Real-time imaging of temporal focusing of a femtosecond laser pulse at 2.5 Tfps. Credit: Jinyang Liang, Liren Zhu & Lihong V. Wang.

Real-time imaging of temporal focusing of a femtosecond laser pulse at 2.5 Tfps. Credit: Jinyang Liang, Liren Zhu & Lihong V. Wang.

During a test, T-CUP captured a femtosecond (a millionth of a billionth second) laser pulse, recording 25 images which were 400 femtoseconds apart. The resolution and staggering scale involved allowed the research team to record changes in the light beam’s shape, intensity, and angle of inclination.

A femtosecond laser pulse passing through a beam splitter. Credit: INRS.

The level of precision obtained by the researchers is unprecedented — and they’d like to do even more! According to co-author Jinyang Liang, there are ways to increase the speed up to one quadrillion (1015) frames per second. Being able to record the behavior of light at such as scale is beyond our current technology but once it becomes reality, entirely new fields of physics could be opened up.

T-CUP was described in the journal Light: Science and Applications. 

share Share

This car-sized "millipede" was built like a tank — and had the face to go with it

A Carboniferous beast is showing its face.

9 Environmental Stories That Don't Get as Much Coverage as They Should

From whales to soil microbes, our planet’s living systems are fraying in silence.

Scientists Find CBD in a Common Brazilian Shrub That's Not Cannabis

This wild plant grows across South America and contains CBD.

Spruce Trees Are Like Real-Life Ents That Anticipate Solar Eclipse Hours in Advance and Sync Up

Trees sync their bioelectric signals like they're talking to each other.

The Haast's Eagle: The Largest Known Eagle Hunted Prey Fifteen Times Its Size

The extinct bird was so powerful it could kill a 400-pound animal with its talons.

Miracle surgery: Doctors remove a hard-to-reach spinal tumor through the eye of a patient

For the first time, a deadly spinal tumor has been removed via the eye socket route.

A Lawyer Put a Cartoon Dragon Watermark on Every Page of a Court Filing and The Judge Was Not Amused

A Michigan judge rebukes lawyer for filing documents with cartoon dragon watermark

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

A bold new theory could bridge quantum physics and gravity at last.

America’s Cities Are Quietly Sinking. Here's Why

Land subsidence driven by groundwater overuse is putting millions at risk.

This Priest Was Embalmed With Wood Chips Through His Rectum—And It Worked Surprisingly Well

A strange embalming technique emerges from the annals of history.