homehome Home chatchat Notifications


Wild cats' brains evolve to a different tune than those of primates, study finds

Same organ, different needs.

Alexandru Micu
November 2, 2016 @ 2:42 pm

share Share

Different needs may guide big cats’ brains to differ from those of other mammals, a new Michigan State University study found.

Image credits Skeeze / Pixabay.

The large frontal brain lobes we see in monkeys, humans, or other social mammals are believed to be so well developed because they lead an intricate social life. But cheetahs are also social creatures, and their frontal lobes are relatively small. Some solitary felines, on the other hand, have pretty large frontal lobes.

Sharleen Sakai, professor of psychology and neuroscience at the Michigan State University and lead author of a paper looking into the issue, says his finding suggest there are multiple other factors besides sociality that influence brain anatomy in carnivores.

“Studying feline brain evolution has been a bit like herding cats,” said Sakai.

“Our findings suggest the factors that drive brain evolution in wild cats are likely to differ from selection pressures identified in primate brain evolution.”

Sakai’s lab wanted to understand which factors shaped carnivore brains into the organs we see today. So, the team looked at 75 wild feline skulls comprising 13 different species, which they obtained from museum collections, including those at MSU. After giving them CT scans, the researchers used specialized software to “fill in” the skulls with brain tissue. In the end, they obtained a pretty accurate measurement of each species’ brain volume.

One theory for the large brains humans and primates show is the effect of sociality. Because living in a group rather than alone is more demanding on the brain — keeping track of who’s who, one’s place in the group, and the overall group dynamics and rules requires a lot of dedicated processing power — we have evolved larger, “social brains“, particularly developed in the frontal cortex area.

“We wanted to know if this idea, called the ‘social brain’ hypothesis, applied to other social mammals, especially carnivores and, in particular, wild cats,” Sakai said.

Of the 13 examined species of felines, 11 are solitary and 2 are social (lions and cheetahs). The team found that overall brain size didn’t differ, on average, between the solitary and social species of wild cats. The size of the brain’s area which includes the frontal cortex, however, did.

Female lions had the largest frontal cortexes, which makes sense — female lions are possibly the most social of all wild cats. They form closely-knit groups to protect their cubs, hunt, or defend territory. Males, who may mostly live solitary lives and take a dominant position in a pride for only a few years at a time, had smaller frontal cortexes. This difference may reflect the lionesses’ adaptation to a much more social life, with more “brain” to process through the needs of life in the pride.

Cheetahs, the other social cat examined, had the smallest overall brains and the smallest frontal cortex of the wild cats. The team thinks that they evolved smaller brains as they weigh less and require less energy — both pretty handy traits if you’re a predator relying on speed to catch prey.

“Cheetah brain anatomy is distinctive and differs from other wild cats,” Sakai said. “The size and shape of its brain may be a consequence of its unusual skull shape, an adaptation for high-speed pursuits.”

Another surprising find was that the leopard‘s frontal lobes are relatively large. Although this species is solitary, it’s also very flexible and adaptable — both behaviors being associated with larger brain size and processing ability in other species.

The full paper “Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae” has been published in the journal Frontiers in Neuroanatomy.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.