homehome Home chatchat Notifications


Why some scientists are trying to redefine the second

Optical clocks use such high vibration oscillators that they may be used to detect gravitational waves.

Tibi Puiu
March 27, 2021 @ 12:31 am

share Share

Credit: Pixabay.

By employing a novel method that linked clocks with ultrafast lasers, physicists at the University of Colorado have demonstrated the most accurate optical atomic clock. These incredibly accurate clocks, which agree within 1 part in 10¹⁸ even though they’re kilometers apart, are even more accurate than conventional atomic clocks, the standard we currently use to define the second. Aside from setting a new standard for the second, optical atomic clocks may also be used in fundamental research, such as for detecting gravitational waves.

Since the ancient Egyptians and Babylonians, people have sought to measure the time of day as accurately as possible. At first, our time-keeping instruments were rudimentary, consisting of sundials and charts that track the movement of celestial bodies to identify changing seasons.

Huge leaps in measuring time were made in the 16th and 17th century by Galileo Galilei and Christiaan Huygen the use of a pendulum that ticked at a fixed frequency. This “oscillating” clock laid the foundation for basically all subsequent timing devices.

Although they operate according to the same principle — an oscillator with a resonance — the main difference between an old pendulum clock and a super modern atomic clock is the frequency of vibration. The smaller, higher frequency an oscillator is, the more stable and pure its resonances will be, thereby making these clocks more reliable.

An atomic clock measures time by counting the flipping frequency of the spin in the electrons of cesium atoms. The atomic resonance is so sharp that it can tell if a quartz crystal clock (i.e. typical clock found in everyday devices) wanders off from the right time by less than one part in 10¹⁵, or a millionth of a billionth.

This explains why the second is officially defined as 9,192,631,770 caesium electron spin flips.

Why on Earth would we want to keep time this precisely? As a matter of fact, the importance of highly precise time-keeping cannot be underestimated. Global Positioning System (GPS) satellite navigation systems rely on time-stamped signals to provide us with a precise location of a GPS receiver. If there were no atomic clocks, there would be no effective GPS. Highly precise timekeeping is also paramount in the financial industry, among other things, for time-stamping transactions in the banking sector or the stock market.

Every decade, the accuracy of atomic clocks has improved by an order of magnitude since their invention. Now, the next leap forward may come from optical clocks.

Schematic of the experimental setup. Credit: Hanacek/NIST.

Theoretically, an optical clock can offer extremely high-frequency precision and stability, far exceeding the performance of the best cesium atomic clocks currently in use. The problem is that optical clocks haven’t been synced over large distances. If these clocks are ever to be useful and trusted, they need to read at the same time even when they’re thousands of kilometers apart.

A breakthrough was reported at the University of Colorado, where physicists employed a new way of linking clocks with ultra-fast lasters. They used multiple clocks based on different types of atoms  — ytterbium, aluminum, and strontium. The strontium clock was placed in the University of Colorado, while the other two were housed at the US National Institute of Standards and Technology.

The clocks were connected directly through the air by a laser beam that traveled over 1.5 kilometers between the two buildings. This link was just as reliable as that provided by 3.6-kilometer optical fiber under the road. The clocks agreed with each other within 1 part in 10¹⁸ — that’s precise enough to measure distortions in space-time, which would make them ideal for detecting gravitational waves. They could also be sensitive enough to detect very subtle vibrations in the Earth’s crust, which could be used to predict volcanic eruptions with more time in advance than we can today.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.