homehome Home chatchat Notifications


Layers of hydrocarbon haze could explain why Pluto's so super-cold

Pluto just got a lot more interesting.

Tibi Puiu
November 16, 2017 @ 6:28 pm

share Share

Plutonian landscapes in twilight, under a hazy sky. Credit: NASA/JHU APL/SwR.

Plutonian landscapes in twilight, under a hazy sky. Credit: NASA/JHU APL/SwR.

Orbiting the sun over 40 times farther away than the Earth, it’s no wonder that Pluto is so incredibly cold. But when New Horizon made its historic flyby of the dwarf planet, NASA scientists were dumbfounded to find Pluto was even colder than expected — about 30 degrees Celsius (86 degrees Fahrenheit) colder. A new hypothesis suggests that a haze of solid hydrocarbons might be regulating Pluto’s temperature. If this hypothesis is confirmed, it would signify a new regime of planetary climate; something that’s never been witnessed before.

Pluto might not be a planet but at least it’s still cool

Researchers at the University of California, Santa Cruz, led by planetary scientist Xi Zhang, believe they’ve found the culprit for Pluto’s anonymously cold atmosphere. The New Horizons spacecraft revealed that the dwarf planet is surrounded by 20 or so layers of haze arranged like the skin of an onion. The haze is made of soot-like solid particles.

Scientists had known for decades that Pluto has an atmosphere and that it might be hazy, but it wasn’t until recently that they began to comprehend this stunningly complex atmospheric mechanism.

Zhang and colleagues devised a mathematical model that investigated whether or not the nanoparticles could be influencing Pluto’s atmospheric temperature. Indeed they can, the model suggested, whose results were almost a perfect match with New Horizon’s empirical observations.

The particles are no bigger than 150 nanometers in diameter and are thought to consist of hydrogen cyanide, acetylene, and other organic compounds, similar to the ones found around Saturn’s moon Titan. These particles might have a significant cooling effect on Pluto by absorbing infrared radiation, thereby reducing atmospheric temperature.

 “Basically, we needed a strong coolant to explain why Pluto is so cold,” Zhang told New Scientist. “We found that the abundant haze particles can strongly cool the atmosphere by re-emitting infrared radiation to space, a process not considered in previous theories.”

“In the infrared range of radiation, a slightly larger amount of energy is radiated back to space by the haze particles, cooling the atmosphere overall,” he added.

From six billion miles away, Earth-based detectors aren’t sensitive enough to identify Pluto’s near-infrared radiation, which could be one of the reasons why the haze wasn’t discovered sooner. Fortunately, the James Webb Space Telescope, which is scheduled to launch in 2019, will be equipped with the proper tools to investigate Pluto’s infrared radiation.

If the researchers’ hypothesis holds water, this would make Pluto the only solar system planetary body whose temperature isn’t principally controlled by gases.

Scientific reference: X Zhang, D F Strobel and H Imanaka, Nature, 2017, DOI: 10.1038/nature24465.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.