homehome Home chatchat Notifications


The sound of music: violins could soon be designed by Artificial Intelligence

Designing violins is an art -- but it could soon become a science.

Alexandra Gerea
June 13, 2021 @ 11:30 am

share Share

Ever since the first violins were made some 500 years ago, the process of violin-making has changed surprisingly little. Traditionally, violins are “bench-made” — by a single individual, often a master maker (or “luthier”). More recently, “shop-made” instruments, where many people participate under the supervision of a master maker, have become more common. But in both instances, the layout is designed by a master violin maker — either from scratch, or copied from the old masters.

That may soon change. According to a new study, Artificial Intelligence (AI) could soon take part in the process.

Image credits: Providence Doucet.T

A violin is a surprisingly complex object. Its geometry is defined by its outline and the arching on the horizontal and vertical section. In a new study, the Chilean physicist and luthier Sebastian Gonzalez (a postdoc) and the professional mandolin player Davide Salvi (a Phd student) showed how a simple and effective neural network can predict the vibrational behavior of violin designs — in order words, how the violin would sound.

The prediction uses a small set of geometric and mechanical parameters from the violin. The researchers developed a model that describes the violin’s outline based on the arcs of nine circles. Using this approach, they were able to draw a violin plate as a function of only 35 parameters.

A drawing from the workshop of Enrico Ceruti showing the outline as a series of connected arcs of circles, image courtesy of the Violin Museum of Cremona, Italy. Image credits: Gonzalez et al.

After starting from a basic design, they randomly changed the parameters they were using (such as the position and the radii of the circles, the thickness, the type of wood, etc) — until they obtained a database of virtual violins. Some of the designs are very similar to shapes already used in violin making, while others have never been attempted before. These shapes were then used to predict what the violin would sound.

“Using standard statistical learning tools, we show that the modal frequencies of violin tops can, in fact, be predicted from geometric parameters, and that artificial intelligence can be successfully applied to traditional violin making. We also study how modal frequencies vary with the thicknesses of the plate (a process often referred to as plate tuning) and discuss the complexity of this dependency. Finally, we propose a predictive tool for plate tuning, which takes into account material and geometric parameters,” the researchers write in the study.

Left: example of an historical violin. Credit: 2008 Stoel, Borman. Right: examples of three violins in the dataset. Credit: Politecnico di Milano

The algorithm was able to predict how the violins would sound with 98% accuracy — far better than even the researchers expected.

The innovative work promises to save a lot of work for violin makers, and it also paves the way for new, innovative types of designs to be tried. For the future research, the team will also look at how to select wood that is most desirable for the violin design.

The study was published in Scientific Reports.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.