homehome Home chatchat Notifications


Ultrafast laser bursts generate electricity faster than anything we know

A beautiful example of theory and experiment working together to advance science.

Tibi Puiu
June 21, 2018 @ 6:15 pm

share Share

Femtosecond laser pulses can distort the properties of matter and generate electricity. Credit: University of Rochester illustration / Michael Osadciw.

Femtosecond laser pulses can distort the properties of matter and generate electricity. Credit: University of Rochester illustration / Michael Osadciw.

In a remarkable story where theory led to an experiment that no one really understood at the beginning, scientists have demonstrated the fastest way to generate electricity. The experiment involved firing an ultra-fast laser pulse onto a glass thread a thousand times thinner than a human hair, which worked as a wire between two metal junctions.

When the laser pulsethat lasts only a millionth of a billionth of a secondhit the glass, it completely changed its properties, coaxing the material to behave like a metal for a fraction of time.

The laser generates a burst of electricity across this very tiny electrical circuit — it does so faster than any other method for producing electricity, and in the absence of an applied voltage to boot.

Simply by varying the shape of the laser (its phase), Ignacio Franco, assistant professor of chemistry and physics at the University of Rochester, was able to control the direction and magnitude of the current.

“This marks a new frontier in the control of electrons using lasers,” the researcher said in a statement.

Previously, in 2007, Franco published a paper theorizing that ultrafast electrical currents could be generated in molecular wires exposed to femtosecond laser pulses, creating a nanojunction. He hypothesized that the electrical current would be generated due to a phenomenon called the Stark effect, in which the energy levels of matter are shifted by the external electric field of the laser.

In 2013, another research group at the Max Planck Institute of Quantum Optics was able to generate ultrafast currents by exposing glass, connected to two gold electrodes, to laser pulses. At the time, no one really knew how to explain the exact mechanisms involved, until Franco entered the picture.

Along with colleagues, Franco embarked on a four-year-long simulation that involved millions of computing hours on the Blue Hive supercomputing cluster.

“We were able to recover the main experimental observations using state-of-the-art computational methods, and develop a very simple picture of the mechanism behind the experimental observations,” he said.

Franco claims the new method can generate currents far faster than ever before.

“This is a wonderful example of how differently matter can behave when driven far from equilibrium. The lasers shake the nanojunction so hard that it completely changes its properties. This implies that we can use light to tune the behavior of matter,” he said.

“Theory led to an experiment that nobody really understood, resulting in better theories that are now leading to better experiments” he says.  “This is an area in which we still have a lot of things to understand,” he added.

The findings appeared in the journal Nature Communications.

share Share

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.

The Fungus Behind the Pharaoh’s Curse Might Help Cure Leukemia

A deadly fungus found in ancient tombs yields a powerful new anti-leukemia compound.

The Woman of Margaux: Reconstructing the Face and Life of a 10,500-Year-Old Hunter-Gatherer

A new facial reconstruction challenges old ideas about Europe’s ancient inhabitants

An Overlooked Hill in Bolivia Turned Out to Be One of the Andes’ Oldest Temples

A temple bigger than a city block was hiding in plain sight for over 1,000 years.

One-Third of the World's Scavengers are Disappearing And This Could Trigger a Human Health Crisis

Nature’s least loved animals are dying fast. This could make the environment stinky and pathogens unstoppable.

Scientists Catch Two Wild Orcas "French Kissing" And It Might Mean More Than You Think

Scientists believe the habit is a part of social bonding.

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.