homehome Home chatchat Notifications


Ultrafast laser bursts generate electricity faster than anything we know

A beautiful example of theory and experiment working together to advance science.

Tibi Puiu
June 21, 2018 @ 6:15 pm

share Share

Femtosecond laser pulses can distort the properties of matter and generate electricity. Credit: University of Rochester illustration / Michael Osadciw.

Femtosecond laser pulses can distort the properties of matter and generate electricity. Credit: University of Rochester illustration / Michael Osadciw.

In a remarkable story where theory led to an experiment that no one really understood at the beginning, scientists have demonstrated the fastest way to generate electricity. The experiment involved firing an ultra-fast laser pulse onto a glass thread a thousand times thinner than a human hair, which worked as a wire between two metal junctions.

When the laser pulsethat lasts only a millionth of a billionth of a secondhit the glass, it completely changed its properties, coaxing the material to behave like a metal for a fraction of time.

The laser generates a burst of electricity across this very tiny electrical circuit — it does so faster than any other method for producing electricity, and in the absence of an applied voltage to boot.

Simply by varying the shape of the laser (its phase), Ignacio Franco, assistant professor of chemistry and physics at the University of Rochester, was able to control the direction and magnitude of the current.

“This marks a new frontier in the control of electrons using lasers,” the researcher said in a statement.

Previously, in 2007, Franco published a paper theorizing that ultrafast electrical currents could be generated in molecular wires exposed to femtosecond laser pulses, creating a nanojunction. He hypothesized that the electrical current would be generated due to a phenomenon called the Stark effect, in which the energy levels of matter are shifted by the external electric field of the laser.

In 2013, another research group at the Max Planck Institute of Quantum Optics was able to generate ultrafast currents by exposing glass, connected to two gold electrodes, to laser pulses. At the time, no one really knew how to explain the exact mechanisms involved, until Franco entered the picture.

Along with colleagues, Franco embarked on a four-year-long simulation that involved millions of computing hours on the Blue Hive supercomputing cluster.

“We were able to recover the main experimental observations using state-of-the-art computational methods, and develop a very simple picture of the mechanism behind the experimental observations,” he said.

Franco claims the new method can generate currents far faster than ever before.

“This is a wonderful example of how differently matter can behave when driven far from equilibrium. The lasers shake the nanojunction so hard that it completely changes its properties. This implies that we can use light to tune the behavior of matter,” he said.

“Theory led to an experiment that nobody really understood, resulting in better theories that are now leading to better experiments” he says.  “This is an area in which we still have a lot of things to understand,” he added.

The findings appeared in the journal Nature Communications.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.