homehome Home chatchat Notifications


Tree-on-a-chip mimics passive pumping mechanism found in plants and trees

MIT found an elegant solution to a complex problem.

Tibi Puiu
March 22, 2017 @ 4:55 pm

share Share

Inspired by natural hydraulic pumps found in trees and plants, MIT engineers devised a ‘tree-on-a-chip’ which mimics the process. The tiny chip can pump water out of a tank for days without moving parts or external pumps. Such a chip could prove useful in a wide range of applications like that require minimal energy input.

Credit: Massachusetts Institute of Technology.

Credit: Massachusetts Institute of Technology.

The group led by Anette “Peko” Hosoi, professor and associate department head for operations in MIT’s Department of Mechanical Engineering, were looking for an effective way to drive hydraulic actuators for small robots. The ultimate goal is to make a small robot that’s just as versatile as Boston Dynamics’ Big Dog, a four-legged, 240-pound robot that runs and jumps through almost any kind of terrain, no matter how rough.

Scaling down the hydraulic pumps and actuators found in Big Dog can be extremely challenging, however, not to mention expensive. Looking for the best way to generate passive pumping, the MIT researchers eventually found their solution in plain sight: trees.

“It’s easy to add another leaf or xylem channel in a tree. In small robotics, everything is hard, from manufacturing, to integration, to actuation. If we could make the building blocks that enable cheap complexity, that would be super exciting. I think these [microfluidic pumps] are a step in that direction,” Hosoi said.

Beneath the thick bark, inside every tree is a complex plumbing system consisting of a vast network of conduits. This network consists of xylem and phloem tissues which transport water and nutrients (sugars) similarly to how our very own vascular system works. These conducting tissues start in the roots and transect up through the trunks of trees, separating into the branches and then branching even further into every leaf.

Propelled by surface tension, water travels up the channels of xylem, then diffuses through a semipermeable membrane into the phloem channels that contain sugar and other nutrients. This way vital water migrates from the roots to the crown and sugars produced by the leaves travel back to the root.

Previously, other groups had tried to make microfluid chips that emulate this perfect balance but these fell short because typically pumping could be sustained for only a couple of minutes. Jean Comtet, a former graduate student in MIT’s Department of Mechanical Engineering, found out what previous models were missing — emulating the tree’s leaves.

While other tree-on-a-chip designs only emulated the xylem and phloem, Comtet helped devise a new model which also accounts for the sugar transport in the leaves.

First, two plastic slides were sandwiched together, then small channels were drilled inside representing the xylem and phloem. The Xylem channel is filled with water and phloem one with water and sugar. In between the two slides, a semipermeable material mimics the diffusing membrane between xylem and phloem. The real innovation was another membrane placed over the phloem channel slide where a commo sugar cube was placed on top representing the additional sugar intake diffusing from the tree’s leaves.

The whole setup was hooked up to a tank filled with water on one end and a beaker at the other end where the water would flow. Tests showed that constant flow could be sustained for several days as opposed to mere minutes. In other words, this was a huge breakthrough.

 “As soon as we put this sugar source in, we had it running for days at a steady state,” Hosoi says. “That’s exactly what we need. We want a device we can actually put in a robot.”

Journal Reference: Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip, Nature Plants, nature.com/articles/doi:10.1038/nplants.2017.32

 

share Share

What Happens When Russian and Ukrainian Soldiers Come Home?

Russian and Ukrainian soldiers will eventually largely lay down their arms, but as the Soviet Afghanistan War shows, returning from the frontlines causes its own issues.

Some people are just wired to like music more, study shows

Most people enjoy music to some extent. But while some get goosebumps from their favorite song, others don’t really feel that much. A part of that is based on our culture. But according to one study, about half of it is written in our genes. In one of the largest twin studies on musical pleasure […]

This Stinky Coastal Outpost Made Royal Dye For 500 Years

Archaeologists have uncovered a reeking, violet-stained factory where crushed sea snails once fueled the elite’s obsession with royal purple.

Researchers analyzed 10,000 studies and found cannabis could actually fight cancer

Scientists used AI to scan a huge number of papers and found cannabis gets a vote of confidence from science.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

AI Made Up a Science Term — Now It’s in 22 Papers

A mistranslated term and a scanning glitch birthed the bizarre phrase “vegetative electron microscopy”

Elon Musk could soon sell missile defense to the Pentagon like a Netflix subscription

In January, President Donald Trump signed an executive order declaring missile attacks the gravest threat to America. It was the official greenlight for one of the most ambitious military undertakings in recent history: the so-called “Golden Dome.” Now, just months later, Elon Musk’s SpaceX and two of its tech allies—Palantir and Anduril—have emerged as leading […]

She Can Smell Parkinson’s—Now Scientists Are Turning It Into a Skin Swab

A super-smeller's gift could lead to an early, non-invasive Parkinson's test.

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

Decades before microplastics made headlines, a caddisfly larva was already incorporating synthetic debris into its home.

Have scientists really found signs of alien life on K2-18b?

Extraordinary claims require extraordinary evidence. We're not quite there.