homehome Home chatchat Notifications


Tooth-mounted sensor can track what you eat

The tiny sensor provides objective information about a user's diet.

Tibi Puiu
March 26, 2018 @ 7:53 pm

share Share

Engineers at Tufts University have devised a tiny sensor that is mounted on a user’s tooth to wirelessly relay information on glucose, salt, and alcohol intake. The technology is similar to Radio-Frequency Identification (RFID) that uses radio waves to read and capture information stored on a tag attached to an object.

Credit: SilkLab, Tufts University.

Monitoring dietary intake is of great importance both in a clinical and research setting. Often, doctors and researchers have to take a patient’s self-reported diet at face value. But having an objective indicator of what kind of food a patient is ingesting would be a lot more desirable.

This is why the Tufts’ dietary sensor is so appealing. Previous such sensors employed extensive wiring, a bulky and uncomfortable mouth guard, and frequent replacement of sensors. In contrast, the new monitoring device measures only 2mm x 2mm, comfortably sitting on the surface of a tooth. Because the data it gathers is transmitted wirelessly, the whole setup is minimally invasive.

The sensor is made of three layers: a central layer that absorbs a chemical, say glucose, sandwiched in between two outer layers consisting of square-shaped gold rings. When an incoming radio wave hits the sensor, it absorbs some of the frequencies and reflects the rest back to the transmitter, just like blue paint absorbs wavelengths in the ‘red’ range and reflects the blue back to our eyes. 

If the central layer detects, for instance, salt, the electrical properties of the sensor’s middle layer will change. This causes the sensor to absorb and transmit a different spectrum of radiofrequency waves with a varying intensity. This signature response can tell an app connected to a user’s smartphone what kind of nutrients are being ingested.

“In theory, we can modify the bioresponsive layer in these sensors to target other chemicals – we are really limited only by our creativity,” said Fiorenzo Omenetto, corresponding author and the Frank C. Doble Professor of Engineering at Tufts. “We have extended common RFID [radiofrequency ID] technology to a sensor package that can dynamically read and transmit information on its environment, whether it is affixed to a tooth, to skin, or any other surface.”

The findings are slated to appear in the journal Advanced Materials

share Share

The surprising health problem surging in over 50s: sexually transmitted infections

Doctors often don't ask older patients about sex. But as STI cases rise among older adults, both awareness and the question need to be raised.

Kids Are Swallowing Fewer Coins and It Might Be Because of Rising Cashless Payments

The decline of cash has coincided with fewer surgeries for children swallowing coins.

Horses Have a Genetic Glitch That Turned Them Into Super Athletes

This one gene mutation helped horses evolve unmatched endurance.

Scientists Discover Natural Antibiotics Hidden in Our Cells

The proteasome was thought to be just a protein-recycler. Turns out, it can also kill bacteria

Future Windows Could Be Made of Wood, Rice, and Egg Whites

Simple materials could turn wood into a greener glass alternative.

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.