homehome Home chatchat Notifications


Breakthrough chemistry can make tires from renewable sources like corn or trees

A key molecule in tire production that's typically sourced from petroleum was made for the first time using biomass.

Tibi Puiu
February 15, 2017 @ 8:51 pm

share Share

Credit: Wikimedia Commons.

Credit: Wikimedia Commons.

Long range electric vehicles hold the key to ridding the transport sector of petroleum liquid fuels, as long as the energy stored in the batteries comes from renewable energy sources. But even a Tesla charged from solar panels isn’t completely free of fossil fuels. Even ignoring the fossil fuel-derived energy that went in the manufacturing process, there are still plastic finishings inside the car that likely come petroleum. And even if you’d be extremely careful not to include anything fossil fuel related, you’d still hit a brick wall — the car’s tires.

Wheels of progress

Car tires are some of the most environmentally unfriendly parts in any car. These are made from natural rubber, which literally grows on trees,  but also isoprene — a key molecule in any tire which is derived from petroleum through a chemical process called ‘cracking’. Developing tires from renewable materials has always been a lofty goal for scientists but despite their best efforts, this has proven extremely challenging until recently. Now, a team from the University of Minnesota claims it has perfected a three-step chemical process that can produce isoprene from renewable biomass such as trees or grasses.

Previous efforts involving the manufacturing of tires from renewable sources focused on biological processes. Specifically, researchers tried fermentation of biomass — a process similar to the one used to produce ethanol — but these attempts have failed. Isoprene proves to be a challenging molecule to generate from microbes.

The team from the Center for Sustainable Polymers at the University of Minnesota also employed microbes in their process but added new steps to produce stable isoprene molecules. Paul Dauenhauer, associate professor of chemical engineering and materials science, along with colleagues, started with sugars derived from biomass, which can include anything from corn to trees. The sugars are then fermented to create itaconic acid, which is in turn reacted with hydrogen in the presence of a metal-metal catalyst to form methyl-THF (tetrahydrofuran), an intermediate molecule key to synthesizing isoprene.

Catalytic conversion of biomass-derived chemicals to renewable polymers occurs in laboratory stirred-tank reactors. Credit: University of Minnesota.

Catalytic conversion of biomass-derived chemicals to renewable polymers occurs in laboratory stirred-tank reactors. Credit: University of Minnesota.

The third and final step involves converting the dehydrate methyl-THF to isoprene, and it is herein that the breakthrough lies. Another catalyst called catalyst called P-SPP (Phosphoros Self-Pillared Pentasil) and discovered at the University of Minnesota was used for this task. Remarkably, the novel catalyst had a catalytic efficiency as high as 90 percent, i.e. most of the catalytic product turns out to be isoprene.

“The performance of the new P-containing zeolite catalysts such as S-PPP was surprising,” says Dauenhauer.  “This new class of solid acid catalysts exhibits dramatically improved catalytic efficiency and is the reason renewable isoprene is possible.”

“Economically bio-sourced isoprene has the potential to expand domestic production of car tires by using renewable, readily available resources instead of fossil fuels,” said Frank Bates, a world-renowned polymer expert and University of Minnesota Regents Professor of Chemical Engineering and Materials Science. “This discovery could also impact many other technologically advanced rubber-based products.”

Findings appeared in the journal  ACS Catalysis.

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.