homehome Home chatchat Notifications


Why there are only three dimensions in this reality

By all account, we can only perceive three spatial dimensions: width, length and height. Everything seems more vibrant and 'real' in 3-D, compared to 2-D, but one can only wonder what things must look in four dimensions. Alas, our brains simply can't fathom a four-dimensional universe, let alone a 99-dimension universe. Moreover, it seems our Universe simply can't host more than three dimensions due to the laws of thermodynamics, physicists say.

Tibi Puiu
May 6, 2016 @ 3:59 pm

share Share

3 dimensions

Credit: physics.brocku.ca

By all account, we can only perceive three spatial dimensions: width, length and height. Everything seems more vibrant and ‘real’ in 3-D, compared to 2-D, but one can only wonder what things must look in four dimensions. Alas, our brains simply can’t fathom a four-dimensional universe, let alone a 99-dimension universe. Moreover, it seems our Universe simply can’t host more than three dimensions due to the laws of thermodynamics, physicists say.

The first law of thermodynamics explains why time is one dimensional. It says that entropy (how disordered a system is) can never decrease. In other words, time can move in only one direction (forward). Can the second law of thermodynamics explain a 3-D space? Maybe, some physicists thought.

A team from University of Salamanca in Spain and the National Polytechnic Institute of Mexico investigated what would happen if you start a new Universe with an undefined number of dimensions. In other words, a universe where it’s unclear in which directions matter and energy can move.

In this hypothetical Universe, just a tiny fraction of a second after the Big Bang when everything was really hot, all energy occupied a tiny amount of space. At this point, there was really no way of telling between a universe with one dimension or one with 99.

The 2nd of thermodynamics says that you can’t get more energy than you have from the get go. This is why perpetual motion machines are impossible. In the case of the Universe, it’s always expanding which means it’s getting bigger in space while at the same time conserving its energy. In other words, as the universe expands there will be less energy in a volume of space. This also means that once the Universe has transitioned into a state of expansion, it can no longer host the same action it had in the past everywhere because everywhere now has less energy than it had.

Back to our hypothethical universe, once it cooled down it had to deal with a thermodynamic quantity called the  Helmholtz free energy density — a sort of pressure on all of space. In the model, this pressure was maximum in those moments following the Big Bang when there were only three dimensions. Because the Universe is constantly cooling down since the Big Bang, there’s less temperature, hence less energy to break the Hemlholtz free energy density and no way to move to a higher dimensional space. We were stuck in 3D since the Big Bang, it seems, because of the physics.

Moments after the big bang, the laws of thermodynamics froze the Universe in 3-D.

Moments after the big bang, the laws of thermodynamics froze the Universe in 3-D. Credit: Gonzalez-Ayala et al. ©2016 EPL

“The greatest significance of our work is that we present a deduction based on a physical model of the universe dimensionality with a suitable and reasonable scenario of space-time. This is the first time that the number ‘three’ of the space dimensions arises as the optimization of a physical quantity,” said Julian Gonzalez-Ayala, at the National Polytechnic Institute in Mexico and the University of Salamanca in Spain for Phys.org. 
“In the cooling process of the early universe and after the first critical temperature, the entropy increment principle for closed systems could have forbidden certain changes of dimensionality,” the researchers explained.

Of course, this isn’t the final word. Next, the researchers plan on refining the model so more quantum effects are included like the so-called  “Planck epoch.” 

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.