homehome Home chatchat Notifications


This crystal is world's largest Schrödinger's cat

Superposition shouldn't be possible for objects larger than an atom -- but these scientists are defying conventional wisdom.

Tibi Puiu
April 27, 2023 @ 11:53 pm

share Share

three cats and three skeletons that illustrate schroedinger's experiment.
Credit: ETH Zurich.

You’ve probably heard about the famous thought experiment that involves Schrödinger’s cat, which can be both alive and dead at the same time. Although it sounds like nonsense in everyday life, scientists have been able to explore analogous situations in the laboratory by using atoms or molecules in quantum mechanical superposition states of being in two places at the same time.

Superposition is only possible in the microcosmos for more quantum objects, such as electrons. Or so we thought.

In a new study, a team of researchers led by Yiwen Chu, a professor at the Laboratory for Solid State Physics at ETH Zurich, has created the heaviest Schrödinger’s cat yet by putting a small crystal into a superposition of two oscillation states.

Creating a Schrödinger Cat

In the original thought experiment, Austrian quantum physicist Edwin Schrödinger imagined a cat locked inside a metal box with a radioactive substance, a Geiger counter, and a flask of poison.

The atom in the substance may or may not decay through a quantum mechanical process with a certain probability, and the decay products might cause the Geiger counter to go off and trigger a mechanism that smashes the flask containing the poison, which would eventually kill the cat.

In this situation, according to the Copenhagen interpretation, developed in the Danish city by luminaries of quantum theory, Niels Bohr and Werner Heisenberg, the atom, and hence the cat whose faith is tied to it, are in a superposition of being decayed/dead and not decayed/alive.

Schrödinger’s thought experiment was actually devised to mock the Copenhagen interpretation, showing how quantum mechanics had been absurdly interpreted. He never contemplated the alive/dead cat superposition seriously.

Nevertheless, since his time, the cat thought experiment and the notion that quantum superpositions of macroscopic states could be possible have led to the Many-Worlds interpretation of quantum theory.

But is a macroscopic superposition really impossible?

Chu and colleagues decided to put this idea to the test. No worries, no feline was hurt in the process. Instead, they probed this question by creating a so-called “cat state” using an oscillating crystal, which is supposed to represent the cat, and a superconducting circuit representing the original decaying atom.

Weighing the Fattest Quantum Cat

schematic of a schroedinger's cat experiment
In the ETH Zurich experiment, the cat is represented by oscillations in a crystal (top and blow-up on the left), whereas the decaying atom is emulated by a superconducting circuit (bottom) coupled to the crystal. Credit: ETH Zurich

The superconducting circuit can take on the logical states “0” or “1” or a superposition of both states, “0+1”. This circuit is essentially a “qubit”, or a quantum bit.

A layer of piezoelectric material creates an electric field when the crystal changes shape while oscillating, and that electric field can be coupled to the electric field of the qubit. Hence, the superposition state of the qubit can be transferred to the crystal. As a result, the crystal can now oscillate in two directions at the same time—up/down and down/up, for instance. Those two directions represent the “alive” or “dead” states of the cat.

By putting the two oscillation states of the crystal in a superposition, Chu’s team has effectively created a Schrödinger cat weighing 16 micrograms, which is roughly the mass of a fine grain of sand but nowhere near that of a cat. Nevertheless, it is several billion times heavier than an atom or molecule, making it the fattest quantum cat to date.

Why This Matters

Quantum mechanics is the physics of the small: the theory governs the behavior of atoms and particles on microscopic scales. Yet, scientists have long puzzled over why these rules seemingly do not apply to the macroscopic world we experience.

Objects at the macro scale follow the laws of classical physics, which describe how everyday things move and behave. The question remains: where does the transition from the quantum to the classical occur?

The answer to this fundamental question is not only of academic interest, but also of practical relevance. One of the potential applications of quantum physics is quantum computing, which could in principle solve certain problems much faster than classical computers.

One of the biggest challenges in developing quantum computers is to create and maintain a state of quantum superposition in a large number of qubits, which are the building blocks of quantum computers. In a Schrödinger’s cat state, the information in the qubit is distributed over a macroscopic object. This could help to overcome some of the challenges of maintaining quantum coherence in large systems.

The research has several implications for the future. First, the creation of more robust quantum bits. Second, the findings help scientists better understand the mystery of why quantum superpositions are not observed in the macroscopic world. With the latter point in mind, Chu’s team hopes to push the mass limits of her crystal cats even further in the future.

In addition, this research may lead to measuring small disturbances, which are difficult to detect using conventional methods. According to Chu, “One potential application could be the detection of very weak electric or magnetic fields.”

The oscillations in the crystal can be disturbed by an external field, and this change can be measured by the superconducting qubit. By detecting the change in the superposition state of the cat, the external field can be measured. This can be useful in detecting tiny changes in magnetic fields, which can be applied in medical imaging or quantum communication.

The work of Chu and her colleagues marks an important step towards realizing the elusive Schrödinger’s cat state in a macroscopic object. While a real cat may never be in such a state, the experiment provides insight into the puzzling boundary between the quantum and classical worlds and could pave the way towards new technologies.

The findings appeared in the journal Science.

share Share

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

Two tiger cubs were released in Siberia. They reunited as mates after a trek of 120 miles

Reuniting as mates, they’ve not only adapted to the wild but sparked new hope for the survival of Amur tigers.

Haunting video from NASA and ESA shows Greenland losing 563 cubic miles of ice in under 30 seconds

We all know (hopefully) that warming temperatures is driving ice loss. But seeing it makes it all the more disturbing. Don’t get me wrong, the visualization produced by NASA and ESA is beautiful, but what it’s showing is simply heartbreaking. Between 2010 and 2023, Greenland lost 563 cubic miles (2,347 cubic kilometers) of ice, which […]

Why aren't there giant animals anymore?

Contrary to Cope's Rule, today's animals, including polar bears, are shrinking due to climate change and human impacts.

The Neuroscience Behind Vermeer's Girl and Its Hypnotic Power

There's a reason why viewers can't look away from Vermeer's masterpiece.

NASA spots Christmas "tree" and "wreath" in the cosmos

NASA has captured the holiday spirit in space with stunning images of NGC 602 and NGC 2264.

How Our Human Lineage Broke All the Rules of Vertebrate Evolution

New study challenges traditional views on human evolution with "bizarre" findings.

A giant volcano spanning 280 miles and taller than Mt. Everest was discovered on Mars

Noctis Mons marks a monumental volcanic discovery on Mars, reshaping our understanding of the Red Planet's geology.

The Future of Acne Scar Treatment: How Exosomes and Fractional CO2 Lasers are Changing the Game

Acne scars no longer have to be a permanent reminder—discover how cutting-edge treatments like exosomes and fractional CO2 lasers are transforming skin rejuvenation.