homehome Home chatchat Notifications


The smallest refrigerator in the world will keep your nanosoda cool

The cooler is 10,000 times smaller than the previously smallest thermoelectric fridge.

Tibi Puiu
February 28, 2022 @ 6:13 pm

share Share

This electron microscope image shows the cooler’s two semiconductors — one flake of bismuth telluride and one of antimony-bismuth telluride — overlapping at the dark area in the middle, which is where most of the cooling occurs. The small “dots” are indium nanoparticles, which the team used as thermometers. Credit: UCLA.

By using the same physical principles that have been powering instruments aboard NASA’s Voyager spacecraft for the past 40 years, researchers at UCLA have devised the smallest refrigerator in the world. The thermoelectric cooler is only 100 nanometers thick — roughly 500 times thinner than the width of a strand of human hair — and could someday revolutionize how we keep microelectronics from overheating.

“We have made the world’s smallest refrigerator,” said Chris Regan, who is a UCLA physics professor and lead author of the new study published this week in the journal ACS Nano.

Instead of your vapor-compression system inside your refrigerator, the tiny device developed by Regan’s team of researchers is thermoelectric. When two different semiconductors are sandwiched between metal plates, two things can happen.

If heat is applied, one side becomes hot, while the other remains cool. This temperature difference can be harvested to generate electricity. Case in point, the Voyager spacecraft, which is believed to have traveled beyond the limits of the solar system after it visited the outermost planets in the 1970s, is still powered to this day by thermoelectric devices that generate electricity from heat produced by a plutonium nuclear reactor.

This process also works in reverse. When electricity is applied, one semiconductor heats up, while the other stays cold. The cold side can thus function as a cooler or refrigerator.

What the UCLA physicists were able to do is scale down thermoelectric cooling by a factor of more than 10,000 compared to the previous smallest thermoelectric cooler.

They did so using two standard semiconductor materials: bismuth telluride and antimony-bismuth telluride. Although the materials are common, the combination of the two bismuth compounds in two-dimensional structures proved to be excellent.

Typically, the materials employed in thermoelectric coolers are good electrical conductors but poor thermal conductors. These properties are generally mutually exclusive — but not in the case of the atom-thick bismuth combo.

“Its small size makes it millions of times faster than a fridge that has a volume of a millimeter cubed, and that would already be millions of times faster than the fridge you have in your kitchen,” Regan said.

“Once we understand how thermoelectric coolers work at the atomic and near-atomic level,” he said, “we can scale up to the macroscale, where the big payoff is.”

One of the biggest challenges the researchers had to face was measuring the temperature at such a tiny scale. Your typical thermometer simply won’t do. Instead, the physicists employed a technique that they invented in 2015 called PEET, or plasmon energy expansion thermometry. The method determines temperature at the nanoscale by measuring changes in density with a transmission electron microscope.

In this specific case, the researchers placed nanoparticles of indium in the vicinity of the thermoelectric cooler. As the device cooled or heated, the indium correspondingly contracted or expanded. By measuring the density of indium, the temperature of the nano-cooler could be determined precisely.

“PEET has the spatial resolution to map thermal gradients at the few-nanometer scale—an almost unexplored regime for nanostructured thermoelectric materials,” said Regan.

The winning combination of semiconductors found by the UCLA physicists may one day be brought to the macro scale, enabling a new class of cooling devices with no moving parts that regulate temperature in telescopes, microelectronic devices, and other high-end devices. 

share Share

Experts Say Autism Surge Is Driven By Better Screening. RFK Jr Desperately Wants It To Be Something Else

RFK Jr just declared war on decades of autism research—armed with no data, a debunked myth, and a deadline.

Weirdest Planetary System Ever? Meet the Planet That Spins Perpendicular to Its Stars

Forget neat planetary orbits — this newly discovered exoplanet circles two brown dwarfs at a right angle.

This living fungus-based building material can repair itself over a month

It's not ready to replace cement just yet, but it's really promising.

​A ‘Google maps for the sea’, sails ​and alternative fuels: ​the technologies steering shipping towards ​lower emissions

 Ships transport around 80% of the world’s cargo. From your food, to your car to your phone, chances are it got to you by sea. The vast majority of the world’s container ships burn fossil fuels, which is why 3% of global emissions come from shipping – slightly more than the 2.5% of emissions from […]

This Tokyo Lab Built a Machine That Grows Real Chicken Meat

A lab in Tokyo just grew a piece of chicken that not only looks like the real thing — it tastes like it too.

Why the Right Way To Fly a Rhino Is Upside Down

Black rhinos are dangling from helicopters—because it's what’s best for them.

Archaeologists Find Oldest Liquid Wine Ever—With the Ashes of a Roman Inside

Scientists confirm a Roman burial wine older than any ever chemically analyzed

Same-Sex Behavior Is Surprisingly Common in Animals — Humans Are No Exception

Some people claim same-sex attraction is "unnatural." Biology says otherwise

Why Geological Maps Are the Best Investment You’ve Never Heard Of

Investments in geological mapping paid off big time for Americans.

Salt Gets All the Blame but the Real Fix for High Blood Pressure Might Be in Bananas and Spinach

Potassium can balance out the ill effects of sodium. But men and women react differently.