homehome Home chatchat Notifications


Temporary scalp e-tattoos that scan brain could replace traditional EEGs forever

Scientists have developed spray-on electronic tattoos that could be a game-changer in brain monitoring.

Tibi Puiu
December 2, 2024 @ 9:10 pm

share Share

EEG setup with e-tattoo electrodes
EEG setup with e-tattoo electrodes. Credit: Nanshu Lu.

Researchers in Austin, Texas, are taking aim at an old but crucial tool for studying the human brain: the electroencephalogram, or EEG. For nearly a century, EEGs have helped scientists and doctors measure the electric pulses that fire through our brains, diagnosing everything from epilepsy to traumatic brain injuries. But they’ve always come with strings attached — literally.

Now, a team of scientists has introduced a stunning upgrade. They’ve created a liquid ink that can be sprayed directly onto a person’s scalp, forming an ultra-thin electronic tattoo. This “tattoo” EEG listens to the brain beneath it.

“Our innovations in sensor design, biocompatible ink, and high-speed printing pave the way for future on-body manufacturing of electronic tattoo sensors,” says Nanshu Lu, one of the lead researchers at the University of Texas at Austin. “It has broad applications both within and beyond clinical settings.”

The invention, detailed in the journal Cell Biomaterials, is being heralded as a potential game-changer, not just for brain monitoring but for the growing field of brain-computer interfaces—the futuristic devices that let people control machines with their thoughts.

From Wires and Gels to a Simple Spray

For anyone who’s endured an EEG, the process feels beyond cumbersome. A technician marks a dozen or more points on your scalp, applies sticky gel, and painstakingly glues electrodes to your head. These electrodes connect to a machine via a tangle of wires. The setup is clunky, uncomfortable, and prone to failure as the gel dries out.

Lu and her collaborators wanted something better. They’ve spent years designing tiny sensors, known as electronic tattoos or e-tattoos, which stick to the skin to measure everything from heartbeats to muscle fatigue. But applying these tattoos to the scalp posed a challenge.

“Designing materials that are compatible with hairy skin has been a persistent challenge in e-tattoo technology,” Lu explains.

Then, their breakthrough came in the form of a new kind of liquid ink made from conductive polymers. The ink flows effortlessly through hair to reach the scalp, where it dries into a thin, flexible film. Once in place, the tattoo acts as a sensor, picking up brain signals with precision.

The process is remarkably simple. Researchers map out the electrode locations using a computer and then use a specialized inkjet printer to spray the liquid ink onto the scalp. Within minutes, the ink dries, forming a lightweight, unobtrusive tattoo. No discomfort; no glue; no wires.

A More Reliable Brain Listener

To test their invention, the researchers applied these temporary tattoos to the scalps of five volunteers with short hair. For comparison, they also attached traditional EEG electrodes next to the tattoos. The results were telling.

After six hours, the gel on the conventional electrodes began to dry out. A third of them stopped working entirely, and the remaining electrodes delivered weaker, noisier signals. The e-tattoos, in contrast, performed flawlessly for at least 24 hours.

The researchers didn’t stop there. They redesigned the tattoos to replace the wires typically used in EEG setups. By tweaking the ink’s formula, they printed thin lines connecting the sensors to a small data collection device. These printed “wires” conducted signals reliably without picking up interference.

The team envisions a future where even these short wires are unnecessary. “This tweak allowed the printed wires to conduct signals without picking up new signals along the way,” says Ximin He, a co-author from the University of California, Los Angeles. Their next step is to embed wireless transmitters directly into the tattoos.

Brain-Machine Interfaces, Redefined

Beyond making EEG tests more comfortable and accurate, the researchers see their technology playing a role in the rapidly evolving field of brain-computer interfaces. These devices, which translate brain signals into commands for external systems, hold immense promise for people with disabilities, offering the ability to control prosthetic limbs or communicate without speaking.

Right now, brain-computer interfaces are bulky and unwieldy. Users typically wear large headsets bristling with electrodes. José Millán, another co-author from the University of Texas at Austin, believes e-tattoos could change that.

“Our study can potentially revolutionize the way non-invasive brain-computer interface devices are designed,” he says. By printing sensors directly onto the scalp, e-tattoos could eliminate the need for headsets altogether, making these devices more accessible and easier to use.

A Glimpse of What’s Next

The idea of wearing electronics on your skin might seem futuristic, but it’s becoming a reality. In recent years, e-tattoos have made their way onto athletes’ chests, tracking heart rhythms, and onto people’s arms, monitoring muscle fatigue. Now, they’re climbing the ladder—straight to the brain.

For now, the liquid ink is confined to the lab, but its creators see a world of possibilities ahead.

“E-tattoos represent a new frontier in wearable technology,” says Lu. “This is just the beginning of what we can achieve.”

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.