homehome Home chatchat Notifications


Smart windows allow or block heat-generating wavelengths of light based on temperature

Bye, bye curtains!

Tibi Puiu
January 16, 2019 @ 11:20 am

share Share

Schematic of the working principle behind the temperature-sensitive polymeric gel microparticles. Credit: Nature.

Schematic of the working principle behind the temperature-sensitive polymeric gel microparticles. Credit: Nature.

Researchers at MIT have devised polymer gels that are fitted inside double-pane windows, allowing or blocking near-infrared light from entering a building. The gel’s properties are regulated by temperature, so the whole process is automatic once a certain thermal threshold is breached. About half of all energy used by households in the United States is used for heating and cooling, so this kind of technology could have a tremendous impact on energy efficiency if adopted on a large scale.

When it gets too sunny outside, most of us use blinds and curtains to keep things inside a bit cooler. In order to remove the human factor (and make cooling a home or office more energy efficient), some engineers have devised electrochromic windows, which darken when a small electrical potential is applied. You’ll find such windows on a Boeing 787 Dreamliner, for instance. Typically, electrochromic windows require a human to activate a switch, although some applications allow the windows to darken automatically in response to temperature read by a third-party sensor.

The problem with electrochromic windows is that they are quite expensive, not very durable, and have inconsistent light-blocking properties. There are, however, windows whose light-penetrating properties are tuned directly by temperature. Previous attempts involve films of vanadium dioxide, a thermochromic compound with sunlight-modulating properties. Its main drawback is that it becomes activated at temperatures in excess of 90 °C, which makes it impractical for real-world use. And when they’re not activated, they only allow little light to come through, having a transmittance of around 50% (semi-opaque).

Researchers now report a novel thermochromic system that is a lot more reliable than previous demonstrations and might actually be practical for widespread use in homes and offices. The smart windows developed by the MIT researchers are based on polymeric gel particles (microgels) trapped between two glass panels. These gels have an extremely uniform density and a structure that forces the particle to swell in water in response to temperature. At 25 °C, the microgel particles have a diameter of 1.4 micrometers, scattering very little light and making the window highly transparent. Above 32 °C, the microgels collapse and expel water, scattering light in the infrared red range (the kind we perceive as heat).

In experiments, the researchers showed that their system achieved an infrared transmittance of 81.6% in the inactivated transparent state, but only 6% when activated. As a result, the temperature inside a test chamber fitted with microgel-based smart windows had a significantly lower temperature compared to a chamber fitted with standard double-pane windows. The smart windows had no noticeable loss in performance after switching between states more than 1,000 times. They’re also not affected by freezing. Finally, the microgels and window assembly are not prohibitively expensive, making the technology promising for real-world applications.

The major drawback is that once activated, the gels make the window relatively opaque because they also scatter ultraviolet and visible frequencies in the spectrum of light. Another drawback is that in the evening, because it’s cool outside, the windows remain fully transparent, reducing privacy. The whole idea is to stop using curtains, so as they stand today, these sort of smart windows may not be practical in all situations.

The system was described in the journal Joule.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.