homehome Home chatchat Notifications


Smart clothes may be right around the corner, thanks to a new fabrication technique

Smart clothes -- not watches -- are the future of wearables.

Mihai Andrei
August 8, 2018 @ 8:02 pm

share Share

Two seemingly incompatible worlds have been joined together thanks to a new technique which allows weaving sensors and semiconductors directly into clothes.

Knitted fabric illuminated by embedded light emitting fiber. Pictures taken by Greg Hren. Owner: Michael Rein and Yoel Fink.

Even before humans developed a true society, we were relying on textiles to cover our skin and insulate ourselves from the cold and rain. As technology progressed, we used textiles for a wide variety of purposes, from backpacks to packaging, and, of course, more clothing. Now, textiles might be getting a revamp and might go “smart”.

Everyday objects seem to get smarter and smarter by the day. We now have smartphones, smartwatches, even smart homes. But one commodity which has remained stubbornly non-smart are clothes. It’s not like clothes wouldn’t benefit from this — there’s a wide array of potential applications, from health sensors to cool, changing colors — but the fabrication process has remained cumbersome and difficult to effectively apply. Simply put, electrical circuits and textiles don’t normally mix well.

This is where Michael Rain, Yoel Fink, and colleagues, enter the stage. They started with a larger polymer mass containing the semiconductor devices alongside a hollow channel. This material is heated and drawn out, at the same time as wire is spooled into the channels.

“As the preform is heated and drawn into a fibre, the conducting wires approach the diodes until they make electrical contact, resulting in hundreds of diodes connected in parallel inside a single fibre,” the study authors explain.

Light emitting fibers woven into fabrics.Pictures taken by Greg Hren. Owner: Michael Rein and Yoel Fink.

Diodes (either LEDs or photodetecting diodes) are spaced out and once drawn, the resulting fibers can be easily woven into fabrics. The process is inherently scalable, allowing the creation of hundreds of meters of these smart fibers, thus overcoming one of the main problems associated with this type of process. The manufacturing process also provides a pattern to knit fabrics with even more advanced functions — opening up a whole new area of research for smart textiles of wearable technologies.

In an accompanying News & Views article, Walter Margulis, a guest professor at KTH Royal Institute of Technology with 30 years in photonics, explains an application demonstrated by the study authors.

“As a final application, Rein et al. show that, if a person presses a finger against a light-emitting fibre and a light-detecting fibre that are near each other, the intensity of the light collected by the light-detecting fibre varies according to the person’s heart rate. This physiological application of textiles could be used in primary-care settings.”

Essentially, this paves the way for integrating low-cost electronic components into fabrics. Whether or not this becomes common practice will presumably be controlled by economic rather than scientific factors, Margulis says, but it’s easy to envisage practical applications of this technology.

The study “Diode fibres for fabric-based optical communications” has been published in Nature.

share Share

Weirdest Solar System Ever? Meet the Planet That Spins Perpendicular to Its Stars

Forget neat planetary orbits — this newly discovered exoplanet circles two brown dwarfs at a right angle.

This living fungus-based building material can repair itself over a month

It's not ready to replace cement just yet, but it's really promising.

​A ‘Google maps for the sea’, sails ​and alternative fuels: ​the technologies steering shipping towards ​lower emissions

 Ships transport around 80% of the world’s cargo. From your food, to your car to your phone, chances are it got to you by sea. The vast majority of the world’s container ships burn fossil fuels, which is why 3% of global emissions come from shipping – slightly more than the 2.5% of emissions from […]

This Tokyo Lab Built a Machine That Grows Real Chicken Meat

A lab in Tokyo just grew a piece of chicken that not only looks like the real thing — it tastes like it too.

Why the Right Way To Fly a Rhino Is Upside Down

Black rhinos are dangling from helicopters—because it's what’s best for them.

Archaeologists Find Oldest Liquid Wine Ever—With the Ashes of a Roman Inside

Scientists confirm a Roman burial wine older than any ever chemically analyzed

Same-Sex Behavior Is Surprisingly Common in Animals — Humans Are No Exception

Some people claim same-sex attraction is "unnatural." Biology says otherwise

Why Geological Maps Are the Best Investment You’ve Never Heard Of

Investments in geological mapping paid off big time for Americans.

Salt Gets All the Blame but the Real Fix for High Blood Pressure Might Be in Bananas and Spinach

Potassium can balance out the ill effects of sodium. But men and women react differently.

CT Scans Save Lives But Researchers Now Say They Could Also Be Behind 100,000 Future Cancer Cases

The benefits still outweigh the risks, but healthy people should stay away from full-body CT scans.