homehome Home chatchat Notifications


New superconducting camera with 400,000 pixels can spot the Universe's dimmest lights

The camera offers unparalleled precision in capturing faint celestial lights.

Tibi Puiu
October 27, 2023 @ 12:24 am

share Share

superconducting camera
Credit: S. Kelley/National Institute of Standards and Technology.

Scientists at the National Institute of Standards and Technology (NIST) have just unveiled a superconducting camera that could redefine our view of the universe. While superconducting cameras have been capturing the universe’s dimmest lights for over two decades, the new camera marks a huge improvement in the state of the art, from a few thousand pixels to a staggering 400,000.

Imaging the universe one photon at a time

Superconducting cameras aren’t new. These devices, which excel at capturing incredibly faint light signals, have been around for over two decades.

Unlike traditional cameras that rely on semiconductor-based sensors to capture a broad spectrum of light, superconductive cameras can detect single photons, making them extremely efficient for capturing faint light sources, such as distant stars or galaxies.

The magic happens when these cameras are cooled to nearly absolute zero. At this temperature, electrical currents flow without resistance, a phenomenon known as ‘superconductivity’. But when a photon — a particle of light — hits the camera’s detector, it disrupts this flow at a particular pixel. By mapping out these disruptions across the camera’s grid, scientists can form an image.

But there’s been a limitation. Until now, these cameras have housed only a few thousand pixels, limiting their potential.

The researchers at NIST, in collaboration with NASA’s Jet Propulsion Laboratory and the University of Colorado Boulder, have shattered this barrier, creating a camera with 400,000 pixels. That’s a staggering 400 times more than previous models.

Until now, adding more pixels to superconducting cameras has been a huge challenge. It’s a bit like trying to connect every house in a city to its own water source. Each pixel in the camera needs its own connection to the cooling system to function. With millions of pixels, this seemed almost impossible.

But, by cleverly combining signals from many pixels onto just a few nanowires, the team managed to sidestep this issue. Borrowing concepts from existing technology, they crafted a system where a single wire could read data from an entire row or column of pixels at once. It’s a bit like playing a game of tic-tac-toe, where each intersection point is a pixel.

The detectors can discern differences in the arrival time of signals as short as 50 trillionths of a second. They can also count up to 100,000 photons a second striking the grid.

superconducting camera single photon
Credit: S. Kelley/NIST.

By using this strategy, the team could quickly detect which pixel was activated by a photon, cutting down on the number of wires needed and paving the way for even larger superconducting cameras in the future. There’s no hard limit to how much you can scale this design, so the researchers claim a superconducting single-photon camera with tens or hundreds of millions of pixels could soon be available.

With such a powerful camera, the possibilities are immense. The applications range from capturing breathtaking images of distant galaxies and planets to enhancing medical imaging. Over the next year, the team aims to enhance its sensitivity, hoping to capture virtually every incoming photon.

The findings appeared in the journal Nature.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.