homehome Home chatchat Notifications


Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.

Tibi Puiu
November 25, 2024 @ 7:18 pm

share Share

A visualization of a photon made by the authors of the new study. Credit: Benjamin Yuen

When we look at the world around us, all that we see is thanks to light. It reflects, refracts, and interacts, carrying shape and depth from the objects it touches.

But what about light itself?

Physicists have now visualized the shape of a photon—the smallest unit of light—using a novel theoretical model. These findings offer new insights into how light behaves, potentially paving the way for innovations in nanophotonics and quantum technology.

What Does a Photon Look Like?

The visualization, produced by researchers at the University of Birmingham, is not a photograph; you can’t simply photograph a photon. Instead, it’s a detailed simulation derived from quantum calculations. “Our calculations enabled us to convert a seemingly insolvable problem into something that can be computed,” said Dr. Benjamin Yuen, one of the lead authors. “And, almost as a by-product of the model, we were able to produce this image of a photon, something that hasn’t been seen before in physics.”

The “shape” of a photon, as physicists define it, is an intensity distribution—a map of where the photon is most likely to be found at a given moment. Brighter regions indicate areas where the photon is more likely to appear. Dr. Yuen explained further for New Atlas: “Because it’s a quantum particle, you cannot measure it in one go as the measurement destroys it. However, if you were to repeat the measurement many times, you would see exactly this distribution.”

This achievement required a profound leap in quantum field theory, combining complex analysis and nanoparticle interactions. By simulating a photon emitted from an atom sitting on a silicon nanoparticle, the researchers highlighted an important observation: the environment profoundly shapes the photon. The nanoparticle, for example, made the photon thousands of times more likely to be emitted and even allowed it to be reabsorbed by the atom multiple times.

Why Does It Matter?

By better understanding the fundamental interactions between light and matter, scientists can design advanced technologies. The findings could be useful in fields ranging from quantum computing to renewable energy. “By understanding this, we set the foundations to engineer light-matter interactions for future applications,” said Yuen. “Think better sensors, improved photovoltaic energy cells, or quantum computing.”

This knowledge builds upon decades of quantum physics research. Until now, scientists could only model photon emission in idealized conditions, such as a perfect vacuum with a single atom. Real-world environments, filled with countless variables, remained largely uncharted. The Birmingham team’s breakthrough narrows these infinite possibilities into manageable sets, making precise modeling achievable for the first time.

As Yuen put it, “Lots of this information had previously been thought of as just ‘noise.’ But there’s so much information within it that we can now make sense of and make use of.” For a particle as elusive as the photon, this discovery is nothing short of illuminating.

The findings appeared in the journal Physical Review Letters.

share Share

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.

Pluto's Moons and Everything You Didn't Know You Want to Know About Them

Let's get acquainted with the lesser known but still very interesting moons of Pluto.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.