homehome Home chatchat Notifications


Scientists measure the smallest gravitational field yet

The experiment showed Newton's law of gravity holds true even between tiny masses measuring just 90 milligrams.

Tibi Puiu
March 10, 2021 @ 9:32 pm

share Share

Credit: Tobias Westphal, University of Vienna.

Physicists at the University of Vienna have managed to measure the gravitational field between two tiny gold spheres with a radius of merely 1 millimeter. In doing so, they’ve effectively measured gravity over the smallest distance to date and probed the nature of gravity at one of the smallest scales that our instruments permit.

Testing the boundaries of fundamental physics

Our knowledge about the subatomic composition of the universe is summarized in what is known as the Standard Model of particle physics. The Standard Model describes both the fundamental building blocks out of which everything is made and the forces through which these blocks interact. There are twelve basic building blocks that we know of (six quarks and six leptons) and four fundamental forces (gravity, electromagnetism, and the weak and strong nuclear forces). Each fundamental force is produced by fundamental particles that act as carriers of the force. For instance, the photon, which is a particle of light, is the mediator of electromagnetic forces.

The behavior of all of these particles and forces is described with the utmost precision by the Standard Model, with one notable exception: gravity.

By testing the coupling force of gravity between very small objects it may be possible to shed more light on what’s missing in our standard model of physics in order to account for gravity’s disconnect from quantum theory.

However, it’s just proven extremely challenging to describe gravity microscopically. This is one of the most important problems in theoretical physics today — finding a quantum theory of gravity.

This is where this new study may come into play.

Credit: Arkitek Scientific

For their research, the team at the University of Vienna led by quantum physicist Markus Aspelmeyer devised an experiment designed to isolate gravity as a coupling force between two tiny gold spheres, each with a mass of just 90 mg.

“The most fundamental questions in physics were always the ones that motivated me most. With this experiment we are already charting new territory, looking into long-standing puzzles like dark energy and fifth forces. The prospect of contributing to the question of gravity must be quantized, even if this is still a long way to go, is highly fascinating as well. As a first step to do this we established techniques to measure small gravitational forces and confirmed the known laws of gravitation on smaller scales than ever before,” Jeremias Pfaff, a physicist at the University of Vienna and co-author of the new study, told ZME Science.

This was actually a lot harder than it sounds, as the team had to overcome a number of painstaking challenges.

“A pendulum able to measure such small acceleration must be extremely
delicate. Building the first few prototypes, we had to insert an almost
invisible tungsten wire into the 10-micrometer hole of a hollow core
glass fiber – which took us hours upon hours – something I surely won‘t
forget,” Pfaff said.

But in the end, it all paid off. The setup was so sensitive that even tiny disturbances such as the rumble of passing-by buses, cable cars, and even earthquakes thousands of miles away could be detected.

To minimize external disturbances, the setup was encased in a Faraday shield that blocks electrostatic forces. One of the gold spheres was connected to a vacuum chamber to minimize seismic and acoustic effects.

The results weren’t surprising, confirming Newtonian physics in that the gravitational force between the two tiny objects depends on their masses and distance.

In the future, the team plans on improving the sensitivity of their experimental setup in order to probe gravitational coupling in objects with an even smaller mass — at least 1,000 times lighter and even shorter distances.

“Why is this interesting? Gravity is omnipresent in our daily lives, and yet our understanding of this phenomenon is far from complete! Experiments that investigate gravity at such small scales explore “terra nova” and may shed new light on its fundamental nature. Even though tackling these deep scientific questions is not motivated by an instant technological benefit, the process of discovering the underlying principles of nature is deeply rooted in human curiosity and hence of interest for everyone,” Pfaff concluded.

The findings appeared in the journal Nature.

share Share

The pair of jeans that sent the chess world in turmoil

Magnus Carlsen wore jeans to a chess tournament. Now the entire sport is boiling over.

Ants outperform humans at group puzzle-solving activity

Ants may have tiny brains, but when it comes to teamwork, they pack a mighty punch.

Geneticists have finally solved the mystery of Garfield’s orange coat

Two new studies have revealed why some cats are orange – an enduring enigma of genetics, until now.

What did Roman wine taste like? It was 'spicy' and had an orange color

The secrets of ancient Roman wine are being uncorked by modern science.

The Science Behind Why Labradors Are Always Hungry

Labrador owners can finally stop feeling guilty for overfeeding.

Cosmic fireworks: zombie star explodes, creating massive filament structures

This incredible image captures the ghost of a supernova 100 light-years across.

3D-printed 'ghost guns', like the one Luigi Mangione allegedly used to kill a health care CEO, surge in popularity as law enforcement struggles to keep up

The use of 3D-printed guns in criminal and violent activities is likely to continue to increase. And governments and police will continue to have trouble regulating them.

The Billion-Year Journey That Shaped the Universe We Know Today

The revolutionary James Webb Space Telescope and next-gen radio telescopes are probing what’s known as the epoch of reionization. It holds clues to the first stars and galaxies, and perhaps the nature of dark matter.

Some Cultures Have No Words for Numbers Beyond 'Three'. Here's What They Can Teach Us

Can you imagine a world without numbers? For many people, that's their reality.

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models