homehome Home chatchat Notifications


Scientists make diamonds from scratch in only 15 minutes

It takes over a billion years of high pressure cooking deep inside the Earth's mantle to make diamonds. But this synthetic variety took just a quarter of an hour to make.

Tibi Puiu
May 22, 2024 @ 8:54 pm

share Share


Digital image of a diamond just for illustrative purposes.
Digital image of a diamond just for illustrative purposes. Credit: AI-generated/DALL-E 3.

Imagine sparkling diamonds, not forged over millions of years in the Earth’s fiery depths, but whipped up in a lab in just a quarter of an hour. This scenario just became a reality thanks to a groundbreaking new method developed by scientists in South Korea. Their research could shatter the traditional diamond market and usher in a new era of diamond production.

Growing diamonds

For decades, growing diamonds in a lab has relied on replicating the Earth’s mantle — a colossal undertaking requiring immense pressure and scorching temperatures to coax carbon to turn into synthetic diamonds. This method, known as high-pressure, high-temperature (HPHT) growth, is not only energy-intensive and time-consuming (weeks), but it also yields limited results. HPHT diamonds are capped at around a blueberry’s size, and the process struggles to produce anything larger.

The new technique developed by Dr. Rodney Ruoff and his team at the Institute for Basic Science in South Korea throws those limitations out the window. Instead of replicating the Earth’s fiery furnace, they’ve devised a surprisingly simple method that operates at sea-level pressure. Their secret lies in a specially designed chamber and the use of gallium, a metal that catalyzes the formation of graphene from methane.

Like diamond, graphene comprises pure carbon, however, their structures are worlds apart. Diamond is made of carbon atoms arranged in a very strong and rigid 3D network. Meanwhile, graphene is made of a single layer of carbon atoms arranged in a hexagonal lattice, almost like a chicken wire.

During their experiments, the researchers funneled superheated, carbon-rich methane gas through the special chamber. There, it encountered a crucible containing a unique mixture of gallium, nickel, iron, and a sprinkle of silicon.

Diamonds made using the new technique.
Diamonds made using the new technique. Credit: Institute for Basic Science.

Within a mere 15 minutes, diamond deposits materialize on the crucible’s base. The resulting diamonds are almost pristine, largely made of carbon with a few silicon atoms of impurity. Although the exact mechanisms are still under investigation, the researchers believe a temperature drop within the chamber concentrates carbon, causing it to crystallize into diamonds. Silicon seems to play a crucial role in this process, potentially acting as a seed for diamond formation.

Impressive work in progress

“For over a decade I have been thinking about new ways to grow diamonds, as I thought it might be possible to achieve this in what might be unexpected (per ‘conventional’ thinking) ways,” Ruoff told Live Science.

There’s a catch, however. While the new method boasts incredible speed and simplicity, it comes at the cost of size. The diamonds produced are microscopic — too tiny to grace your finger or adorn a necklace. But there’s a silver lining. The low-pressure environment used in this technique has scientists optimistic about scaling up production. If they can figure out how to make these diamonds grow to a usable size, this could be a game changer for the industry.

So, what does the future hold for these minuscule diamonds? While they might not be dazzling on your finger anytime soon, their industrial potential is vast. In the future, new diamonds may be only a mere 15 minutes away.

“In about a year or two, the world might have a clearer picture of things like possible commercial impact,” Ruoff told Live Science.

The findings were reported in the journal Nature.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.