homehome Home chatchat Notifications


Scientists make diamonds from scratch in only 15 minutes

It takes over a billion years of high pressure cooking deep inside the Earth's mantle to make diamonds. But this synthetic variety took just a quarter of an hour to make.

Tibi Puiu
May 22, 2024 @ 8:54 pm

share Share


Digital image of a diamond just for illustrative purposes.
Digital image of a diamond just for illustrative purposes. Credit: AI-generated/DALL-E 3.

Imagine sparkling diamonds, not forged over millions of years in the Earth’s fiery depths, but whipped up in a lab in just a quarter of an hour. This scenario just became a reality thanks to a groundbreaking new method developed by scientists in South Korea. Their research could shatter the traditional diamond market and usher in a new era of diamond production.

Growing diamonds

For decades, growing diamonds in a lab has relied on replicating the Earth’s mantle — a colossal undertaking requiring immense pressure and scorching temperatures to coax carbon to turn into synthetic diamonds. This method, known as high-pressure, high-temperature (HPHT) growth, is not only energy-intensive and time-consuming (weeks), but it also yields limited results. HPHT diamonds are capped at around a blueberry’s size, and the process struggles to produce anything larger.

The new technique developed by Dr. Rodney Ruoff and his team at the Institute for Basic Science in South Korea throws those limitations out the window. Instead of replicating the Earth’s fiery furnace, they’ve devised a surprisingly simple method that operates at sea-level pressure. Their secret lies in a specially designed chamber and the use of gallium, a metal that catalyzes the formation of graphene from methane.

Like diamond, graphene comprises pure carbon, however, their structures are worlds apart. Diamond is made of carbon atoms arranged in a very strong and rigid 3D network. Meanwhile, graphene is made of a single layer of carbon atoms arranged in a hexagonal lattice, almost like a chicken wire.

During their experiments, the researchers funneled superheated, carbon-rich methane gas through the special chamber. There, it encountered a crucible containing a unique mixture of gallium, nickel, iron, and a sprinkle of silicon.

Diamonds made using the new technique.
Diamonds made using the new technique. Credit: Institute for Basic Science.

Within a mere 15 minutes, diamond deposits materialize on the crucible’s base. The resulting diamonds are almost pristine, largely made of carbon with a few silicon atoms of impurity. Although the exact mechanisms are still under investigation, the researchers believe a temperature drop within the chamber concentrates carbon, causing it to crystallize into diamonds. Silicon seems to play a crucial role in this process, potentially acting as a seed for diamond formation.

Impressive work in progress

“For over a decade I have been thinking about new ways to grow diamonds, as I thought it might be possible to achieve this in what might be unexpected (per ‘conventional’ thinking) ways,” Ruoff told Live Science.

There’s a catch, however. While the new method boasts incredible speed and simplicity, it comes at the cost of size. The diamonds produced are microscopic — too tiny to grace your finger or adorn a necklace. But there’s a silver lining. The low-pressure environment used in this technique has scientists optimistic about scaling up production. If they can figure out how to make these diamonds grow to a usable size, this could be a game changer for the industry.

So, what does the future hold for these minuscule diamonds? While they might not be dazzling on your finger anytime soon, their industrial potential is vast. In the future, new diamonds may be only a mere 15 minutes away.

“In about a year or two, the world might have a clearer picture of things like possible commercial impact,” Ruoff told Live Science.

The findings were reported in the journal Nature.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.

New Blood Test Reveals How Fast Your Organs Are Aging. Your Brain’s Biological Age May Hold the Key to How Long You Live

People with "older" brains had a much higher risk of dying compared to "younger" brains.