homehome Home chatchat Notifications


Scientists just invented an entirely new way to cool things that could one day replace our polluting fridges

From ice to ions, scientists have now made a breakthrough in heating and cooling technology.

Tibi Puiu
January 10, 2023 @ 8:57 pm

share Share

 Credit: Jenny Nuss/Berkeley Lab.

During winter, you’ll often see municipal trucks spray salt on roads and sidewalks to clear them of snow. Although no heat is added, the dissolution of the salt effectively lowers the freezing point of water, which explains why the ice melts even in sub-zero temperatures. And since the natural world is guided by energy conservation, the melting ice cools its environment.

Remarkably, no energy input is required for this to happen, which gave some scientists a cool idea. In a new study, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory in the U.S. have used this exact physical principle to develop a new refrigeration device that cools stuff in an entirely different way compared to your kitchen fridge. This new method is believed to be not only more energy efficient but also much friendlier to the environment because conventional refrigeration hinges on extremely potent greenhouse gases as their cooling agent.

How ionocaloric cooling works

Similarly to conventional refrigeration, the new cooling technique in question, called “ionocaloric cooling”, exploits the fact that heat is absorbed or released when materials change phase, such as going from solid ice to liquid water. In order for ice to melt, it must absorb heat from its surroundings and when water freezes solid, it releases heat into the environment.

In an ionocaloric device, this phase change comes about not by pressurizing or heating a material but rather through the flow of ions, which are electrically charged atoms or molecules.

This animation shows the ionocaloric cycle in action. When a current is added, ions flow and change the material from solid to liquid, causing the material to absorb heat from the surroundings. When the process is reversed and ions are removed, the material crystalizes into a solid, releasing heat. Credit: Jenny Nuss/Berkeley Lab

When an electric field is applied to a material, the ions within that material experience a force and begin to move. This movement causes a change in the material’s entropy, which leads to a change in temperature. By applying and removing an electric field in a controlled manner, it is possible to use the ionocaloric effect to produce cooling or heating. Tada!

But is this method actually feasible? After refining the theory underlying the ionocaloric cycle and demonstrating the technique experimentally, the physicists at the Berkeley Lab sure think so.

“The landscape of refrigerants is an unsolved problem: No one has successfully developed an alternative solution that makes stuff cold, works efficiently, is safe, and doesn’t hurt the environment,” said Drew Lilley, a graduate research assistant at Berkeley Lab and PhD candidate at UC Berkeley who led the study. “We think the ionocaloric cycle has the potential to meet all those goals if realized appropriately.”

The ionocaloric device is a solid-state technology that uses ionic motion, in contrast to conventional cooling that relies on the phase change of a liquid to absorb heat and produce cooling. No compressor or expansion valves, nor any moving parts are required, meaning an ionocaloric refrigerator is potentially more energy-efficient, environmentally friendly and capable of quickly heating or cooling depending on the situation, and can cover a wider range of temperatures.

FeatureIonocaloric CoolingConventional Refrigeration
Energy efficiencyPotentially more efficientCan be relatively inefficient
Environmental impactDoes not rely on refrigerantsCan have a significant environmental impact if refrigerants are released into the atmosphere
Temperature rangeNot limitedTypically used for cooling temperatures between -20 and 40 °C
SpeedCan be activated and deactivated quicklyCan take some time to cool or heat up
SizeMore compact and portableCan be relatively large and bulky

The future of cooling

The team of researchers performed experiments using a salt made of iodine and sodium to melt ethylene carbonate crystals, an organic solvent routinely used in Li-ion batteries. Using just a single volt of charge, the system temperature difference of a whopping 25 degrees Celsius (45 degrees Fahrenheit).

The new study also mentions that the ionocaloric cycle has the potential to compete with or even exceed the efficiency of gaseous refrigerants found in the majority of systems today. Additionally, by using a material like ethylene carbonate, which can be produced by using carbon dioxide as an input, the refrigerant could have a negative global warming potential, meaning it could actually remove carbon from the atmosphere.

This is particularly important seeing how many countries are struggling to meet climate change goals, such as those in the Kigali Amendment (accepted by 145 parties, including the United States in October 2022). The agreement commits signatories to reduce the production and consumption of hydrofluorocarbons (HFCs) by at least 80% over the next 25 years. HFCs are powerful greenhouse gases commonly found in refrigerators and air conditioning systems.

“There’s potential to have refrigerants that are not just GWP [global warming potential]-zero, but GWP-negative,” Lilley said. “Using a material like ethylene carbonate could actually be carbon-negative, because you produce it by using carbon dioxide as an input. This could give us a place to use CO2 from carbon capture.”

The ionocaloric cycle can also be run in reverse to produce heating for both residential and industrial applications. Right now, the team is busy optimizing the ionocaloric cycle in order to improve its efficiency as well as its scaling potential so it can support large amounts of cooling demanded by the industry.

“We have this brand-new thermodynamic cycle and framework that brings together elements from different fields, and we’ve shown that it can work,” said Ravi Prasher, a research affiliate in Berkeley Lab’s Energy Technologies Area and adjunct professor in mechanical engineering at UC Berkeley. “Now, it’s time for experimentation to test different combinations of materials and techniques to meet the engineering challenges.”

The findings appeared in the journal Science.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.