homehome Home chatchat Notifications


Samsung may be on the brink of self-emissive QLEDs

The QLED TV sets you see on Amazon aren't actually the real deal. This is what genuine quantum dot-based displays might look like.

Tibi Puiu
November 28, 2019 @ 10:09 pm

share Share

Researchers at Samsung Electronics recently described a new method that extends the lifetime and efficiency of quantum dot light-emitting diodes (QLEDs). Although researchers are still not sure if they will ever be able to commercialize self-emissive QLED displays, this technology may become a defining component of flagship TVs and displays in the future.

Samsung’s commercially available QLED TV sets don’t actually use quantum dots as the light source. But it happen as early as 2025, South Korean researchers say. Credit: Amazon.

Quantum dots are artificial nanoscale crystals that can transport electrons and have varied properties, depending on their shape and material. Researchers first noticed in the early 1980s that if they made semiconductor particles small enough, quantum effects would come into play — enter the world of quantum dots.

What we now know about quantum dots is that their optical properties can be finely tuned depending on their size. For instance, these nanoparticles can be made to emit or absorb specific wavelengths of light — which is essentially color — by controlling their size. A 3-nanometer quantum dot can convert a spectrum of light into green while a 6-nanometer quantum dot gives off the color red.

Due to their appealing physical properties, quantum dots can be employed in a wide range of applications in such areas as electronics, photonics, information storage, solar energy, medicine, sensing, or medicine — to name just a few.

Most people have heard of quantum dots because of TV screens. Samsung Electronics and LG launched the first QLED TVs in 2015.

However, these TV sets do not use QEDs as a light source. Instead, a liquid crystal display (LCD) acts as the backlight, which is absorbed by a film of quantum dots that emits luminance. But in the future, self-luminating QLEDs might become a reality.

In a new study published in the journal Nature, researchers at Samsung, led by Dr. Eunjoo Jang and Dr. Yu-Ho Won, improved the structure of a quantum dot made out of indium phosphide.

The study describes how the novel structure prevents oxidation of the core and prevents energy from escaping by wrapping the quantum dot into a thick shell.

Results show that the quantum dot diodes have a lifetime of a million hours. Their efficiency also improved by 21.4% compared to the previous record holder. Another important achievement was the usage of indium phosphide, which is non-toxic and environmentally friendly. Most QLED research has employed cadmium, which has the highest performance as a light source due to its extraordinary malleability and integrity. The problem is that cadmium is toxic.

Quantum dots are both photoluminescent and electroluminescent, both properties that will be at the core of the next-generation of displays. Compared to organic luminescent materials used in organic light-emitting diodes (OLDEs), quantum dot-based diodes have purer colors, longer lifetime, lower manufacturing cost, and lower power consumption. And since quantum dots can be deposited on any structure — you can literally spray or paint them on surfaces — QLEDs can be flexible or printed.

Samsung seems very serious about this technology. In October, it vowed to invest $11 billion by 2025 to produce genuine, self-luminating quantum dot displays. The South Korean tech giant has so far over 170 patents on element structure in QLEDs.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.