homehome Home chatchat Notifications


Samsung almost doubled the capacity of lithium-ion batteries by adding graphene

Paired with recent advances in graphene deposition and manufacturing, this sort of tech of could very well end up powering your notebook or phone a couple years from now.

Tibi Puiu
June 29, 2015 @ 5:04 pm

share Share

In a recent paper published in Nature, researchers at the Samsung Advanced Institute of Technology report how they nearly doubled the charge carrying capability of a lithium-ion battery by coating the silicon anodes with graphene. Paired with recent advances in graphene deposition and manufacturing, this sort of tech of could very well end up powering your notebook or phone a couple years from now.

Image: Wikimedia Commons

Image: Wikimedia Commons

When working to improve batteries, one of the first thing engineers look at is the energy-to-weight ratio or gravimetric energy density. This is defined as the amount of energy that an energy storage medium can store per kilogram of energy storage medium mass. In other words: Energy density/energy to weight ratio is the amount of energy that an energy storage system can store per kg of batteries, capacitors, or other energy storage mediums such as compressed air tanks (including the air), as well as pumped hydroelectric storage tanks (including the water).

The gravimetric capacity of silicon is reaches almost 4,000 mAh g−1, which makes it unparalleled. But at the same time, the volumetric capacity of silicon (the capacity of silicon taking into account volume increases resulting from lithium insertion) weakens with each charge–discharge cycle. If we could find a way to improve the volumetric capacity over time, while retaining silicon’s fantastic gravimetric capacity then some incredibly well versed batteries could be available. In other words, you could cram up a lot more energy in the same volume; a game changer for renewable energy storage or, particularly, electric vehicles where space and autonomy is highly important.

The researchers at Samsung worked out a new design in which multilayer graphene was grown directly on the surface of the silicon anode as a coating. Previously, graphene grown on silicon resulted in poor batteries because of silicon carbide (SiC) formation. Silicon carbide is an electrical insulator so you don’t want it anywhere near your battery’s anode. The Samsung researchers overcame this challenge by developing a chemical vapour deposition (CVD) process that involves a mild oxidant.

“With the assistance of the graphene interlayer sliding process and enhanced conductivity, the graphene-coated Si NPs reach a volumetric capacity of 2,500 mAh cm−3 (versus 550 mAh cm−3 of commercial graphite), the highest value among those reported to date for any LIB anodes while exhibiting excellent cycling and rate performance,” the authors write in the paper published in Nature.

Overall, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities 1.8 times higher than those of current commercial lithium-ion batteries. After 200 cycles, the capacity was only 1.5 times higher because the silicon nanoparticle anodes lose charge over time faster. Still, it’s one impressive improvement.

To make this kind of tech work, though, the industry needs to work together. Namely, graphene needs to be easily manufactured and deposited on anodes, in this case. Incidentally, researchers at University of Exeter say they’ve developed a way to make graphene better, cheaper, faster. All at mass scale. How convenient.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.