ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Huge, rare diamonds help us learn more about the Earth’s mantle

Diamonds are a geologist's best friends.

Mihai AndreibyMihai Andrei
December 16, 2016
in Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Part of Earth’s mantle is shown to be conductive under high pressures and temperatures
Scientists make diamonds from scratch in only 15 minutes
Temperature control and monitoring achieved at the cellular level
The Nile is 30 million years old — and held together by movements in the Earth’s mantle

Geologists analyzing diamonds of exceptional size and quality have uncovered new clues about the Earth’s geology. By analyzing their chemistry and structure, researchers were able to infer things about the Earth’s mantle, an area inaccessible to direct research.

Diamonds can be used in jewelry… or they can help us better understand the planet’s geology. Image credits: Jennifer Dickert

Diamonds, despite being really expensive, are not entirely that rare. In fact, they’re routinely used in several industrial branches. But big diamonds on the other hand, that’s a completely different story – they’re not only much rarer, but also significantly different. Large gem diamonds like the Cullinan have a unique set of physical characteristics.

“Some of the world’s largest and most valuable diamonds, like the Cullinan or Lesotho Promise, exhibit a distinct set of physical characteristics that have led many to regard them as separate from other, more common diamonds. However, exactly how these diamonds form and what they tell us about the Earth has remained a mystery until now,” explains Dr. Wuyi Wang, GIA’s director of research and development, and an author of the study.

Some of these diamonds grow to such sizes because they were formed in the depths of the Earth, at 360-750 km below the surface (approximately 224-466 miles), in the convecting mantle – much lower than most diamonds which generally form at 150-200 km (approximately 93-124 miles). Being formed at these depths, some of them carry within chemical inclusions from that part of the mantle  – a solidified mixture of iron, nickel, carbon and sulfur, with some traces of fluid methane and hydrogen in the thin tiny space between the metallic phases and the encasing diamond. As diamonds grow, small droplets of metallic liquid were occasionally trapped within. In other words, they encase within them a part of the deep mantle’s chemistry, providing us with a direct example of something we would normally just infer.

“This new understanding of these large, type IIa diamonds resolves one of the major enigmas in the study of diamond formation — how the world’s largest and most valuable diamonds formed,” says Smith. “The composition of the inclusions, however, provides the story.”

Of course, sampling the biggest (and most expensive) diamonds in the world is hardly possible. But big diamonds are always polished and some parts (the scratchings) are not that interesting for jewelers. Normally, these scratchings would also be unavailable, but Smith and his team were lucky enough to be given permission for study. What they want to see now is whether this chemical distribution is localized, or is found everywhere throughout the mantle.

“Previous experiments and theory predicted for many years that parts of the deep mantle below about 250 km depth contain small amounts of metallic iron and have limited available oxygen. Now, the metallic inclusions and their surrounding methane and hydrogen jackets in these diamonds provide consistent, systematic physical evidence to support this prediction,” explains Smith.

Journal Reference: E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, W. Wang. Large gem diamonds from metallic liquid in Earths deep mantle. Science, 2016; 354 (6318): 1403 DOI: 10.1126/science.aal1303

Tags: diamondmantle

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Chemistry

Scientists Grow Diamonds at Atmospheric Pressure in Liquid Metal and It’s a Game Changer

byTibi Puiu
4 months ago
Future

This Carbon-14 Radioactive Diamond Battery Could Last Longer Than Human Civilization

byTibi Puiu
5 months ago
Geology

Scientists find ancient 250-million-year-old seafloor from the time of dinosaurs hidden in Earth’s mantle

byTibi Puiu
9 months ago
Geology

Massive 2,492-Carat Diamond Unearthed in Botswana, Second Largest in History

byTibi Puiu
10 months ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.