homehome Home chatchat Notifications


Quantum computer slows down virtual chemistry reaction 100 billion times

A novel quantum method allowed researchers to witness engineered conical intersections directly for the first time.

Tibi Puiu
August 28, 2023 @ 11:16 pm

share Share

An ion trap at the University of Sydney's Quantum Control Laboratory
An ion trap at the University of Sydney’s Quantum Control Laboratory. Ion traps are used to confine individual atoms for experiments in quantum control and quantum computing. Credit: Professor Michael Biercuk/University of Sydney.

Scientists from the University of Sydney employed a fancy quantum computer to dramatically slow down a critical chemical reaction process. The researchers managed to slow down the typically almost instant process by an astonishing factor of 100 billion times, marking a significant advancement in our understanding of molecular dynamics.

“It is by understanding these basic processes inside and between molecules that we can open up a new world of possibilities in materials science, drug design, or solar energy harvesting,” said Vanessa Olaya Agudelo, joint lead author of the new study and a PhD student at the University of Sydney.

“It could also help improve other processes that rely on molecules interacting with light, such as how smog is created or how the ozone layer is damaged.”

Too fast to see

The research team focused on observing the interference pattern of a single atom triggered by a common geometric structure in chemistry known as a ‘conical intersection’. These intersections play a vital role in rapid photochemical processes, including light harvesting in human vision and photosynthesis in plants.

When molecules undergo photochemical reactions, they transition between various electronic states. Conical intersections act as crossroads during these transitions, allowing molecules to switch between different states with remarkable speed. When light hits our eyes we almost instantly process the stimulus as vision, for instance — and it’s all partly due to these conical intersections.

Although chemists have long sought to directly observe these geometric processes since the 1950s, the rapid timescales involved in chemical reactions have posed a significant challenge.

Researchers then constructed a movie of the ion’s evolution around the conical intersection (see GIF). Each frame of the GIF shows an image outlining the probability of finding the ion at a specific set of coordinates.
Researchers then constructed an animation of the ion’s evolution around the conical intersection. Each frame of the GIF shows an image outlining the probability of finding the ion at a specific set of coordinates. Credit: Nature Chemistry/University of Sydney.

To overcome this obstacle, the quantum researchers devised an ingenious experiment in which they used a quantum computer to reconstruct two-dimensional wavepacket densities of a single trapped ion of ytterbium confined in vacuum by electric fields — a method that enables capturing the intricate behaviors of molecules. This allowed them to map the complex problem onto a relatively compact quantum device and subsequently slow down the simulated process by an extraordinary factor of 100 billion. This is slow enough to see the conical intersections in action.

The outcomes of the experiments harmonize seamlessly with the theoretical model, underscoring the remarkable capability of analog quantum simulators, particularly those actualized using trapped ions. These simulators exhibit remarkable precision in describing the quantum effects arising from the motion of atomic nuclei.

“In nature, the whole process is over within femtoseconds,” said Olaya Agudelo. “That’s a billionth of a millionth — or one quadrillionth — of a second.”

“Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds. This allowed us to make meaningful observations and measurements.”

A milestone in ultrafast dynamics

In the past, researchers have detected indirect traces of these geometric phases in patterns of scattering and spectroscopic data. But before this breakthrough, scientists had no method at their disposal to directly observe the dynamics of these geometric phases because they simply happened too fast.

Moreover, this isn’t some kind of digital approximation of the process, but rather a direct analog observation of the quantum dynamics of the chemical phenomenon unfolding at a speed that we can observe intermediate steps. Dr. Christophe Valahu, a joint lead author from the School of Physics, drew an analogy to understanding the air patterns around a plane wing in a wind tunnel.

The study’s implications stretch to crucial biological processes like photosynthesis, wherein plants derive energy from sunlight. Molecules involved in photosynthesis transfer energy at incredibly high speeds. But other fields of science where molecules change at fast timescales could also have much to gain.

The findings appeared in the journal Nature Chemistry.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.