homehome Home chatchat Notifications


Ancient Half-A-Billion-Year-Old Fossil Reveals One of Earth's Earliest Moving Animals

Scientists discover a 555-million-year-old creature that could move on its own. That was a big deal back then.

Tibi Puiu
October 21, 2024 @ 9:45 pm

share Share

Artists rendering of Quaestio simpsonorum, one of the earliest moving animals
Artistic rendering of what scientists believe Quaestio simpsonorum looked like. Credit: Walker Weyland.

In the remote outback of South Australia, paleontologists have unearthed fossils of a peculiar creature that may rewrite our understanding of early animal life. Named Quaestio simpsonorum, this ancient marine organism lived approximately 555 million years ago and is one of the earliest known animals capable of movement.

A Question-Marked Pioneer

“The animal is a little smaller than the size of your palm and has a question-mark shape in the middle of its body that distinguishes between the left and right side,” Scott Evans, assistant professor of geology at Florida State University and lead author of the study, said in a press statement. “There aren’t other fossils from this time that have shown this type of organization so definitively. This is especially interesting as this is also one of the first animals that was capable of moving on its own.”

Discovered at Nilpena Ediacara National Park, a site renowned for its rich fossil beds, Quaestio simpsonorum lived during the Ediacaran Period — a fundamental era when single-celled organisms began evolving into complex multicellular life.

Image of researcher Prof. Scott Evans lead author on the study of Quaestio simpsonorum fossil
Professor of Geology Scott Evans excavating in South Australia’s outback. Credit: Emily Hughes.

Researchers believe that Quaestio simpsonorum behaved like an ancient underwater vacuum, roaming the seafloor and consuming nutrients such as microscopic algae and bacteria. As it moved, it left behind trails in the organic mat that coated the seafloor — a kind of nutrient-rich prehistoric slime.

“One of the most exciting moments when excavating the bed where we found many Quaestio was when we flipped over a rock, brushed it off, and spotted what was obviously a trace fossil behind a Quaestio specimen — a clear sign that the organism was motile; it could move,” said Ian Hughes, a graduate student in organismic and evolutionary biology at Harvard University.

The creature’s distinct left-right asymmetry is particularly notable. It marks an important evolutionary development that allowed animals to do different things with each side of their bodies, hinting at the genetic mechanisms that would later give rise to more complex animals.

“Determining the gene expressions needed to build these forms provides a new method for evaluating the mechanisms responsible for the beginnings of complex life on this planet,” Evans explained. “Because animals today use the same basic genetic programming to form distinct left and right sides, we can be reasonably confident those same genes were operating to produce these features in Quaestio, an animal that has been extinct for more than half-a-billion years.”

A Window into Early Evolution

Image of body and trace fossils of Quaestio simpsonorum
Body and trace fossils left by Quaestio. Credit: Scott Evans.

The discovery not only sheds light on the evolution of movement and body organization but also adds context to how complex life can form — whether on Earth or elsewhere in the universe. It underscores the diversity of life that was already present during the Ediacaran Period, long before the Cambrian Explosion, which is often cited as a time of rapid diversification of life forms.

“We’re still finding new things every time we dig,” Hughes said. “Even though these were some of the first animal ecosystems in the world, they were already very diverse. We see an explosion of life really early on in the history of animal evolution.”

As paleontologists continue to excavate the vast fossil beds of Nilpena Ediacara National Park, they remain hopeful about uncovering more secrets from Earth’s distant past. Each new discovery adds a piece to the puzzle of how life evolved from simple single-celled organisms to the complex array of animals we see today.

“It’s incredibly insightful in terms of telling us about the unfolding of animal life on Earth,” said Mary Droser, distinguished professor of geology at UC Riverside and Nilpena’s lead scientist. “Studying the history of life through fossils tells us how animals evolve and what processes cause their extinction, be it climate change or low oxygen.”

The findings appeared in the journal Evolution & Development.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.