homehome Home chatchat Notifications


Programmable metafluid changes its properties on demand

We've never seen something like this before.

Tibi Puiu
April 4, 2024 @ 1:17 am

share Share

Fluid
Credit: Pixabay.

Every type of liquid has its unique properties. Water and mayonnaise, for instance, don’t flow the same and behave differently when compressed. But what if you had a single fluid that can change its properties on demand depending on the application? This is exactly what scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) were able to do. They’ve devised a first-of-its-kind programmable metafluid, marking a significant leap forward in materials science.

This metafluid can change its viscosity, springiness, and even the way it reflects light on command. These properties could prove highly useful for a range of applications from robots to optical devices that go from clear to opaque.

“We are just scratching the surface of what is possible with this new class of fluid,” said Adel Djellouli, a Research Associate in Materials Science and Mechanical Engineering at SEAS and first author of the paper.

“With this one platform, you could do so many different things in so many different fields.”

A new era of fluid dynamics

Fabrication and dynamic pressure responses of the metafluids, featuring both centimeter- and micrometer-scale capsules. The compression characteristics were revealed with detailed experimental and numerical analysis.
Fabrication and dynamic pressure responses of the metafluids, featuring both centimeter- and micrometer-scale capsules. The compression characteristics were revealed with detailed experimental and numerical analysis. Credit: Nature.

The metafluid is composed of a suspension of small, elastomer spheres, ranging from 50 to 500 microns. These spheres can buckle under pressure, which is how they alter the characteristics of the fluid in which they are suspended. Hundreds of thousands of these were added to a silicon oil solution. When the pressure of the liquid increases, the capsules collapse and form a lens-like half sphere. When the pressure is removed, the capsules pop back into their original spherical shape.

It is this transition that allows the metafluid to change its properties. The degree of alteration is highly tunable, depending on the number, thickness, and size of the capsules.

For example, the metafluid can transition between behaving as a Newtonian fluid, where its viscosity is constant regardless of the applied stress, and a non-Newtonian fluid, where its viscosity changes in response to sheer force.

Versatile and capable

Such versatility may have profound implications. In hydraulic actuators, for instance, the metafluid could enable robots to adjust their grip strength without the need for additional sensors or programming.

The team showcased the liquid’s programmable nature by using it in a hydraulic robotic gripper to successfully grasp a glass bottle, an egg, and a blueberry. Traditional hydraulic systems rely on simple air or water and require sensors or external controls to adjust grip without causing damage. Instead, the metafluid-equipped gripper automatically responds to different pressures.

Similarly, this metafluid could enable smart shock absorbers that dissipate energy depending on the intensity of the impact. In another experiment, the researchers showed how pressure-based programming can make the fluid act like a logic gate. The researchers even reprogrammed the optical properties. When pressure is applied and the capsules collapse, they act like microlenses that allow light to pass through, making the liquid transparent. After the pressure is removed and capsules revert to spheres, light is scattered, rendering the meta-fluid opaque.

“We show that we can use this fluid to endow intelligence into a simple robot,” said Djellouli.

Potential across fields

This innovation builds on the concept of metamaterials, materials not found in nature that are designed with unique properties dictated by their structure rather than their composition. Unlike their solid counterparts, metafluids can flow and adapt. This flexibility sounds very promising at the moment. The team achieved this breakthrough using a scalable fabrication technique.

“The application space for these scalable, easy-to-produce metafluids is huge,” Katia Bertoldi, William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and senior author of the paper.

The findings appeared in the journal Nature.

share Share

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bycicle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.