homehome Home chatchat Notifications


Laser stopwatch measures atomic events with trillionth of a billionth of a second accuracy

This is one fast 'camera'.

Tibi Puiu
November 10, 2016 @ 3:21 pm

share Share

When photons hit a material’s atoms, the interaction causes changes in state that happen extremely fast. Now, researchers have measured the duration of such a phenomenon with unbelievable accuracy, in the zeptosecond range (10-21 s).

Atomic precision

Researchers in Germany were able to calculate the probable position of the remaining electron of a helium atom which was hit by photons. The brightest area around the atomic nucleus shows the most likely position of the electron. Credit: Schultze/Ossiander

At such tiny scales, weird things start to happen because we’re now in the domain of quantum mechanics. Based on current theoretical frameworks, physicists calculated that when light particles called photons hit a helium atom, the photon is either entirely absorbed by one of the atom’s two electrons or distributed among them. Regardless of the mode of transfer, one electron is always ejected from the helium atom – a process called photoemission, or the photoelectric effect as Albert Einstein called it at the beggining of the last century. This basic principle is what allows solar cells to generate electricity, for instance.

Physicists at LMU Munich and the Max Planck Institute of Quantum Optics wanted to observe in great sub-atomic detail what happens during this interaction. If you were to optically image photoemission, you’d need the fastest shutter speed camera in the world. That’s because the duration of the process, defined as the time between the first instant a photon interacts with electrons and the moment one electron is ejected, takes 5 to 15 attoseconds (10-18 seconds)

The German researchers fired light on helium atoms, then used an improved measurement method to capture events that occur on timescales down to 850 zeptoseconds. First, an attosecond-long, extremely ultraviolet (XUV) light pulse hit the helium atom to excite the electrons. Meanwhile, a second laser pulse fired infrared light at the same target which lasted far less, for about four femtoseconds (10-15 seconds).

As expected, an electron was ejected from the helium atom in response to the XUV light and subsequently detected by the infrared laser. The electromagnetic field of the XUV pulse oscillates and, depending on its state, can accelerate or decelerate the ejected electron. Simply by measuring this change in speed, we can establish the duration of the photoemission event – all with zeptosecond precision.

The findings published in Nature revealed for the first time how the energy of the incident photon is quantum mechanically distributed among the two helium electrons in the final few attoseconds before one of the particles is ejected.

“Our understanding of these processes within the helium atom provides us with a tremendously reliable basis for future experiments,” explains Martin Schultze, a specialist in laser physics at LMU’s Chair of Experimental Physics, who led the experiments at the MPQ. He and his team were able to correlate the zeptosecond precision of their experiments with theoretical predictions made by their colleagues in the Institute of Theoretical Physics at the Technical University of Vienna. With its two electrons, helium is the most complex system whose properties can be calculated completely from quantum theory. This makes it possible to reconcile theory and experiment. “We can now derive the complete wave mechanical description of the entangled system of electron and ionized helium parent atom from our measurements,” says Schultze.

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.