homehome Home chatchat Notifications


Penta-graphene is stronger and better than graphene - we only need to make it, now

Chinese researchers ran simulations and found that a pentagon-containing version of graphene is theoretically stable. The 2D allotrope of carbon is made up of atom-thick sheet of carbon atoms arranged in a repeating pentagon pattern, while graphene is made up of carbon atoms arranged in a hexagon pattern, like a chicken wire. Graphene is the strongest material in the […]

Tibi Puiu
February 12, 2015 @ 10:42 am

share Share

Chinese researchers ran simulations and found that a pentagon-containing version of graphene is theoretically stable. The 2D allotrope of carbon is made up of atom-thick sheet of carbon atoms arranged in a repeating pentagon pattern, while graphene is made up of carbon atoms arranged in a hexagon pattern, like a chicken wire. Graphene is the strongest material in the world and fantastic electrical conductor, among other wonder properties, but the penta-graphene would be even stronger and possibly more useful in electronics since it readily comes as a semiconductor. The “only” big challenge researchers face is actually synthesizing the 2D carbon pentagon pattern, and the Chinese team already has some ideas in mind. It’s worth considering that graphene was once thought to be impossible to synthesize.

Stronger, better graphene

 Penta-graphene would be a unique two-dimensional carbon allotrope composed exclusively of pentagons.

Penta-graphene would be a unique two-dimensional carbon allotrope composed exclusively of pentagons. Credit: Wang

Qian Wang, a researcher Peking University, first had the idea of studying penta-graphene after she saw an artwork on the wall of a Beijing restaurant depicting pentagon-shaped street tiles.

‘When I saw the wall decoration with a pentagonal tiling pattern, I conceived the idea of building a 2D carbon sheet using only pentagons,’ she says.

“I told my husband, “Come, see! This is a pattern composed only of pentagons,'” she said. “I took a picture and sent it to one of my students, and said, ‘I think we can make this. It might be stable. But you must check it carefully.’ He did, and it turned out that this structure is so beautiful yet also very simple.”

Inspired, Wang worked together with researchers from the University of Science and Technology of China in Hefei, Tohoku University in Japan and Virginia Commonwealth University in the US to see whether penta-graphene would be possible. Amazingly, not only did the simulations show that it is stable it should also be stronger than conventional graphene and be able to withstand higher temperatures, up to 730°C.

The team used simulations to show the possible arrangement of carbon atoms in penta-graphene. Credit: PNAS

The team used simulations to show the possible arrangement of carbon atoms in penta-graphene. Credit: PNAS

While it has very appealing mechanical properties, penta-graphene – if ever synthesized – might become a fantastic electronics feedstock. Graphene exhibits exceptionally high charge carrier mobility, which makes it appealing for future electronic applications. Unfortunately, it also has no band-gap, so we need to chemically alter it with impurities to turn it into a semiconductor. Penta-graphene on the other hand is a natural semiconductor.  This could potentially prove useful for manufacturing carbon nanotubes (CNTs), as current CNT synthesis processes produce a mixture of metallic and semiconducting CNTs, depending on the orientation of the hexagons when a graphene sheet is rolled up. In contrast, rolling up a sheet of penta-graphene should only produce semiconducting CNTs. Penta-graphene is also auxetic, making it ideal for anything from electronic circuits to body armour.

‘If you stretch graphene, it will expand along the direction it is stretched, but contract along the perpendicular direction,’ explains Wang. ‘However, if you stretch penta-graphene, it will expand in both directions.’

In graphene, each carbon atom is sp2 bonded to 3 other carbon atoms, forming a 2-dimensional hexagonal lattice. In diamond, each carbon atom is sp3 bonded to 4 other carbon atoms, forming a 3-dimensional lattice. In this work, the authors describe a way of filling up a 2-dimensional plane with carbon atoms in which some are bonded to 3 neighbors and some are bonded to 4. The result is a buckled sheet (so not purely 2-D) of atoms that forms a tiling of non-regular pentagons (compared to graphene’s tiling of regular hexagons).

[RELATED] How to make graphene in a kitchen blender

Penta-graphene has several interesting and unusual properties. For example, penta-graphene is a semiconductor, whereas graphene is a conductor of electricity. Credit: PNAS

Penta-graphene has several interesting and unusual properties. For example, penta-graphene is a semiconductor, whereas graphene is a conductor of electricity. Credit: PNAS

Some 3D materials contain both hexagon patterned and pentagon pattern carbon, like the spherical C60 buckyballs, but so far scientists have only been able to synthesise a single carbon nanomaterial made exclusively of pentagons in the form of a C20 cage. Wang and team suggest 2D penta-graphene could be harvested by  peeling single sheets from a layered material known as T12-carbon – another purely theoretical carbon arrangement. The penta-hexagon simulation was reported in the journal PNAS.

‘We are looking for some experimental groups in China that are good at synthesising new materials,’ says Wang. ‘Penta-graphene is energetically more stable than C20 [and so] we hope that it will not be so difficult to synthesise.’

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.