homehome Home chatchat Notifications


Some parasitic plants can steal genes then use them against their hosts

That's not very nice.

Alexandru Micu
October 25, 2016 @ 8:22 pm

share Share

A new Penn State university study found 52 cases of nonsexual transfer of DNA — or horizontal gene transfer (HGT) — from a host plants into a parasitic species known as broomrapes (genus Orobanche).

Image credits Joshua Tree National Park / Flickr.

The transferred genes became functional in the parasites, said Claude dePamphilis, professor of biology at Penn State and co-author of the paper. Although HGT is rare in complex life, discovering that it can occur in parasitic plants could help us better defend our crops against them.

The team used genetic data to generate the evolutionary histories of thousands of genes in the parasite plants, dePamphilis said. They then looked at the transcriptomes — the expressed gene sequences — of three of these plants: Triphysaria versicolor (yellowbeak owl’s-clover), Striga hermonthica (giant witchweed) and Phelipanche aegyptiaca (Egyptian broomrape). They also examined the non-parasitic plant Lindenbergia philippensis, and genome sequences from 22 other non-parasitic plants. Because they also considered mithocondrial RNA (which can move between the host and the parasite) as a possible source for the transfers, they had to test all the data and rule out their experimental hosts as the source of genetic material. They found that the “foreign” sequences in the parasites had been derived from entire genes of past hosts, incorporated into the parasites’ genomes.

“[The broomrape family] includes some of the the world’s most devastating agricultural weeds,” said dePamphilis.

“The HGT discovery is really part of our effort to try to better understand how parasitic plants work and how we can better control them. Our hope is that we can use this information to find the best strategies to generate, or breed, resistant host plants.”

The researchers believe this transfer boosts the parasite’s ability to invade their host and overcome its natural defenses. The genes stolen this way could also provide the parasite with increased resistance to infection and pathogens the host plant has evolved to fight against.

HGT is actually pretty common in simple organisms, like bacteria. But complex life, such as you, or me, or a cucumber, transfers genes vertically — through the sexual exchange of DNA, with mutations and natural selection providing the means and incentive for evolution. But the researchers think the close feeding connections between the parasite plants and their hosts increases the chance of genes finding their way to the parasite, where they can become functional.

“Parasitic plants seem to have a far greater rate of horizontal gene transfer than non-parasitic plants and we think this is because of their very intimate connection they have with their host,” said dePamphilis.

Parasite plants push roots into their host, which they use to extract water, sugars, minerals, even nucleic acids such as DNA and RNA, dePamphilis added.

“So, they are stealing genes from their host plants, incorporating them into the genome and then turning those genes back around, very often, as a weapon against the host.”

This kind of plants plague farmers (figuratively speaking) around the world. In some areas, they are so numerous that they’re a major driver behind crop loss. In Sub-Saharan Africa the witchweed (Striga) is one of the biggest source of crop yield loss.

Future research may investigate the mechanism of horizontal gene transfer to help engineer improved plant defenses against parasitic attacks, dePamphilis concluded.

The full paper titled “Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.