homehome Home chatchat Notifications


New type of wood discovered in Tulip trees proves we don't know everything about plant anatomy

It is neither hardwood nor softwood. However, it's great at storing the atmospheric carbon.

Rupendra Brahambhatt
August 7, 2024 @ 3:47 pm

share Share

A new study reveals that two tree species, the American Tulip Tree (Liriodendron tulipifera) and the Chinese Tulip Tree (Liriodendron chinense) grow a never-described type of wood that is neither hardwood nor softwood. 

Image credits: Brandon P-R/Pexels

Countries like China and Vietnam have been running Tulip tree plantation programs focused on utilizing their exceptional carbon storage ability. However, what made the Tulip trees so good at carbon sequestration was a secret until now. The findings from the study suggest the answer to this question lies in the microscopic structure (ultrastructure) of their wood.

To come across this finding, the study authors examined the wood ultrastructure of 33 tree species using a cryo-scanning electron microscope (cryoSEM). 

“We analyzed some of the world’s most iconic trees like the giant sequoia, Wollemi pine, etc. This could be the largest survey, using a cryo-electron microscope, of woody plants ever done,” Raymond Whitman, one of the study authors and a researcher in plant physiology at Stanford University, said.

The unique cell wall of Tulip tree wood

Trees generally have hardwood (such as in eucalypts, oak, birch, ash, and other flowering trees) or softwood (found in conifers and pines). Wood is made of secondary cell walls, a thick layer located between the primary cell wall (which forms bark, leaves, and growing tissues) and the cell membrane. 

Wood ultrastructure of L. tulipifera. Image credits: Jan J Lyczakowski and Raymond Wightman

The secondary cell wall (SCW) is rich in cellulose, hemicellulose, and lignin, organic compounds that provide structural integrity and strength to wood

“Secondary cell walls are also the largest repository of carbon in the biosphere, which makes it even more important to understand their diversity to further our carbon capture programs to help mitigate climate change,” said Jan Łyczakowski, study author and a researcher in the Plant Biotechnology Department of Jagiellonian University.

The density and durability of SCW rely on the structure and arrangement of macrofibrils, which are nano or micro-sized fibers (depending on the tree) made of cellulose organized in layers to form the cell wall. 

The cryoSEM analysis reveals that the average diameter of microfibrils in hardwood trees is 27.9 nanometers. It is typically around 16.6 nm in softwood trees. However, for L. tulipifera and L. chinense, the macrofibril diameter comes out to be 22.4 nm, and this intermediate diameter is consistent across the secondary cell wall.

“To evaluate whether this feature is confined to water-conducting tracheary elements or whether other cell types containing SCWs also have different microfibril size in Liriodendron, we decided to investigate macrofibril diameter in fiber cells. Our results indicate that the intermediate macrofibril size seen in Liriodendron is maintained in fibers,” the study authors note.

The perks of medium-sized macrofibrils  

The study suggests that changes in the properties of secondary cell walls are sensitive to macrofibril diameter. For instance, it is possible that the intermediate macrofibril size in the American and Chinese Tulip trees could be an adaptation for storing more carbon. 

Moreover, Liriodendrons originated at a time when atmospheric CO2 underwent drastic reduction, falling from 1,000 parts per million to 500 ppm. This change may have forced the trees to develop intermediate macrofibrils for improved carbon sequestration.

“Liriodendrons diverged from Magnolia Trees around 30-50 million years ago, which coincided with a rapid reduction in atmospheric CO2. Their enlarged macrofibril structure could be an adaptation to help them more readily capture and store larger quantities of carbon when the availability of atmospheric carbon was being reduced. This might help explain why Tulip Trees are highly effective at carbon storage,” Łyczakowski notes.

These findings suggest that similar to China and Vietnam, other countries like the US (home to the American Tulip) can also consider Tulip tree plantations to enhance carbon sequestration. 

However, before they go down this path, it is important to know the current study presents a hypothesis. Further research is required to confirm the connection between intermediate macrofibril size and carbon storage

“To further evaluate this hypothesis, it will be important to extend the structural analysis of macrofibrils beyond the selection of organisms presented in this work, which represents only a small proportion of the diverse plant kingdom,” the study authors note.

The study is published in the journal New Phytologist.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.