homehome Home chatchat Notifications


New method can detect ovarian cancer from urine samples

We're getting better and better at detecting this silent killer.

Mihai Andrei
February 16, 2024 @ 12:53 pm

share Share

ovarian cancer detecction
Generic image suggesting progress in the field of ovarian cancer detection. AI-generated image (Dall-E3)

In the past couple of decades, our ability to treat cancers has become much better. A part of this comes from our ability to detect cancers earlier than before, which then enables earlier treatment than before. In a new study, researchers present a new method that can track one of the more prevalent types of cancer — ovarian cancer — from a urine sample alone.

Advances in detection technology

Ovarian cancer can be a silent killer because, in many cases, it produces no symptoms (or symptoms that can be attributed to something else). Oftentimes, by the time it is diagnosed, it has progressed to a stage where it becomes more difficult to treat.

But advances in biomarker discoveries are transforming early detection techniques for this disease.

Previous research showed that if ovarian cancer creeps in, it releases thousands of small molecules (peptides) in the urine. These molecules are technically detectable with existing methods, but the techniques are expensive and time confusing. So instead, Joseph Reiner and colleagues at Virginia Commonwealth University turned to a method called nanopore sensing.

Nanopore sensing is a cutting-edge method that involves the use of tiny pores, only nanometers in diameter, to detect and analyze molecules — including peptides. When a molecule passes through or near a nanopore, it causes a specific change in the ionic current flowing through the pore. By measuring these changes, scientists can identify the molecule based on its unique “signature.”

This technology is particularly useful for detecting peptides, which are short chains of amino acids, because it allows for the real-time, label-free identification and analysis of these biomolecules. This capability makes nanopore sensing a powerful tool for biomedical research, diagnostics, and the development of new therapeutics. Now we can rapidly characterize peptides and their interactions within biological systems in detail.

Seeking the silent killer

In this particular case, the researchers used gold nanoparticles. The peptides produced by ovarian cancer will then stick to the gold particle and then create a unique signature that can be detected, Reiner explains.

In this study, the researcher focused on detecting 13 peptides particularly linked to biomarkers from the urine of ovarian cancer patients. Of those 13 peptides, Reiner said, “we now know what those signatures look like, and how they might be able to be used for this detection scheme. It’s like a fingerprint that basically tells us what the peptide is.”

It’s not clear what is the success rate of this test. But for now, the team’s objective isn’t to develop a standalone test. Rather, they aim to combine this test with information such as blood tests, ultrasound scans, and family history, to develop and improve early-stage ovarian cancer detection.

Worldwide, 1 in 87 women will develop ovarian cancer — and the rate is much higher in the developed world. Ovarian cancer survival rates are also much lower than other cancers that affect women, particularly because detection is often so challenging.

This is why advances such as this one can make a big difference, and it’s not the only progress made in detecting ovarian cancer. Blood samples are also being increasingly used in early detection of this type of cancer.

The landscape of ovarian cancer detection is evolving rapidly. Advances in medical science, including genetic testing, biomarker discoveries, and innovative imaging technologies, are transforming the early detection and management of this disease.

The research was presented at the 68th Biophysical Society Annual Meeting, which was held February 10 – 14, 2024 in Philadelphia, Pennsylvania. It is not yet published in a peer-reviewed journal.

share Share

Pluto's Moons and Everything You Didn't Know You Want to Know About Them

Let's get acquainted with the lesser known but still very interesting moons of Pluto.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

We can't confirm it yet, but it's as close as it gets.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Forget the wild-haired savages. Here's what Vikings really looked like

Hollywood has gravely distorted our image.

Is a Plant-Based Diet Really Healthy for Your Dog? This Study Has Surprising Findings

You may need to revisit your dog's diet.

Who Invented Russian Roulette? How a 1937 Short Story Sparked the Deadliest "Game" in Pop Culture

Russian Roulette is deadly game that likely spawned from a work of fiction.

What Do Ancient Egyptian Mummies Smell Like? "Woody", "Spicy" and Even "Sweet"

Scientists used an 'electronic nose' (and good old biological sniffers) to reveal the scents of ancient mummies.

A Massive Seaweed Belt Stretching from Africa to the Caribbean is Changing The Ocean

The Great Atlantic Sargassum Belt hit a record 37.5 million tons this May

Stone Age Atlantis: 8,500-Year-Old Settlements Discovered Beneath Danish Seas

Archaeologists took a deep dive into the Bay of Aarhus to trace how Stone Age people adapted to rising waters.