homehome Home chatchat Notifications


New Liquid Metal Tech Outperforms Existing Solutions by 72%

This new material promises to cut data center cooling costs and emissions.

Tibi Puiu
November 12, 2024 @ 7:35 pm

share Share

Credit: University of Texas at Austin.

Data centers are indispensable in our digital age, where the demand for cloud computing, artificial intelligence, and streaming services continues to surge. But these server farms, packed with powerful processors, are also energy-hungry beasts. They require vast amounts of electricity to keep cool, driving up operational costs and contributing to carbon emissions. Now, a team of researchers from the University of Texas at Austin have come forward with a potential solution.

Researchers developed a new “thermal interface material” (TIM) designed to dissipate heat more efficiently than anything currently available on the market. This material, made by blending a liquid metal alloy called Galinstan with ceramic aluminum nitride, outperforms the best commercial liquid metal cooling products by up to 72%.

Not your typical CPU thermal paste

Data centers, which power everything from cloud storage to AI models, generate enormous heat. Cooling these facilities accounts for roughly 40% of their total energy consumption. Globally, that translates to around 8 terawatt-hours of energy use annually—enough to power entire cities. As AI and machine learning applications expand, the pressure on data centers is only set to grow. Goldman Sachs recently predicted that data center power demand could surge by 160% by 2030, with AI alone potentially adding 200 terawatt-hours per year in power consumption over the next decade.

Schematic of essential components in power devices. Credit: The University of Texas at Austin.

This is where the new TIM developed at the University of Texas comes in. The researchers achieved a remarkable feat by combining the liquid metal with ceramic particles using a process known as mechanochemistry. This method creates controlled, gradient interfaces within the material, allowing heat to flow through it more efficiently than ever before. The result is a TIM capable of dissipating an impressive 2,760 watts of heat from an area as small as 16 square centimeters.

“This breakthrough brings us closer to achieving the ideal performance predicted by theory,” said Kai Wu, the lead author of the study. “Our material can enable sustainable cooling in energy-intensive applications, from data centers to aerospace, paving the way for more efficient and eco-friendly technologies.”

Impact Beyond the Lab

The new material could drastically reduce the need for energy-intensive fans and pumps in data centers, cutting their energy usage for cooling by up to 65%. If deployed industry-wide, this technology could lower cooling energy demands by 13%, reducing overall data center power consumption by at least 5%.

Guihua Yu, a professor in the Cockrell School of Engineering and Texas Materials Institute, emphasized the urgency of finding new solutions. “The power consumption of cooling infrastructure for energy-intensive data centers and other large electronic systems is skyrocketing,” Yu noted. “That trend isn’t dissipating anytime soon, so it’s critical to develop new ways, like the material we’ve created.”

But the journey from the lab to the real world remains a challenge. So far, the team has only tested the material on a small scale in controlled lab environments. The next step involves scaling up production and conducting field trials with data center partners. If successful, this new cooling technology could soon become a staple in the industry, allowing server farms to run more processors in the same space without overheating.

While it may take years before this technology is available for consumer use, the implications for large-scale data operations are clear. By making data centers more efficient, it could help curb the world’s ever-expanding environmental digital footprint.

The findings appeared in the journal Nature Nanotechnology.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.