homehome Home chatchat Notifications


New biofilm can produce continuous electricity from your sweat

Wearable electronics could soon be powered by dead microbes, based on this new study

Fermin Koop
August 3, 2022 @ 10:04 pm

share Share

Researchers at the University of Massachusetts Amherst have produced a biofilm that yields the energy in evaporation and then converts it to electricity. The biofilm could bring big changes to the world of wearable electronics, powering everything from personal medical sensors to personal electronics.

Image credit: The researchers.

The new study focuses on a specific strain of bacteria, Geobacter sulfurreducens — a bacteria known as an electricigen because it can produce and conduct electricity. This microbe is one of many others that have shown the ability to produce electricity under certain conditions, including during evaporation – making it a good candidate for biofilms that can be stuck on the skin to harvest power.

Previous studies have looked at the potential of other bacteria to generate electricity but it’s very tricky keeping the microbes alive and offering them suitable conditions. Now, the team at Amherst found that G. sulfurreducens doesn’t need to be alive to generate electricity. In fact, it’s even better if it isn’t.

“It’s much more efficient,” Derek Lovley, study author, said in a statement. “We’ve simplified the process of generating electricity by radically cutting back on the amount of processing needed. We sustainably grow the cells in a biofilm, and then use that agglomeration of cells. This cuts the energy inputs and makes everything simpler.”

Bacteria and electricity

The bacteria chosen by the researchers grow in matted colonies thick as a sheet of paper, with each microbe connected to its neighbor through what the researchers call “natural nanowires”. The team took these mats and engraved small circuits into them using a laser. They are then fitted between electrodes and encased in a polymer patch.

The patch can be worn on the skin, where it starts generating electricity as sweat evaporates from the person’s skin. The biofilm appears to work better than inorganic evaporation-based current generators when it comes to salty water, the researchers said. Overall, its structure facilitates the evaporation process, they wrote in their paper.

“The limiting factor of wearable electronics has always been the power supply,” Jun Yao, professor of computer engineering at the University of Massachusetts Amherst, and the paper’s other senior author, said in a media statement. “Batteries run down and have to be changed or charged. They are also bulky, heavy, and uncomfortable.”

The new biofilm can produce as much energy as a comparably-sized battery, doesn’t need to be cared for, and never needs to be charged or plugged in. The experiments done as part of this study showed that the biofield maintained its performance for at least 18 hours and powered a strain sensor measuring respiration and other body signals.

When interconnected, the biofilm sheets also powered a laser-patterned wearable electrochemical glucose sensor. But its potential could go much further than just wearables, the researchers think. If it proves scalable over large surface areas, this technology could harness some of the solar energy that reaches the Earth and is lost in the process of evaporating water.

The study was published in the journal Nature.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.