homehome Home chatchat Notifications


Scientists find new microorganism that may shed light on evolution of complex cells

The discovery of a new microorganism may help bridge the knowledge gap between simple and complex cellular organisms, also shedding light on how complex cellular life came to be.

Mihai Andrei
May 7, 2015 @ 12:05 am

share Share

The discovery of a new microorganism may help bridge the knowledge gap between simple and complex cellular organisms, also shedding light on how complex cellular life came to be.

Image of a hydrothermal vent field along the Arctic Mid-Ocean Ridge, close to where 'Loki' was found in marine sediments. Credit: Centre for Geobiology (University of Bergen, Norway) by R.B. Pedersen

Image of a hydrothermal vent field along the Arctic Mid-Ocean Ridge, close to where ‘Loki’ was found in marine sediments.
Credit: Centre for Geobiology (University of Bergen, Norway) by R.B. Pedersen

For all of life’s complexity on Earth, we generally divide it in two classes: prokaryotes, and eukaryotes. Prokaryotes are the simplest life forms, with small, simple cells without nuclei; they comprise only of Bacteria and a group of creatures called Archaea. Meanwhile, eukaryotes have large, complex cells with nuclei and a degree of internal organisation, and they make up for all the other life on our planet – everything that’s macroscopic, and much of the microscopic too.

The problem is that the difference between these two groups is so huge that how the latter evolved from the former still remains a mystery; recent studies have indicated that eukaryotes evolved from Archaea, but the differences between the two are hard to account for, and biologists haven’t been able to find any organism to link the two – until now.

“The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology,” the authors wrote. “Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate.”

Caption: Image of a hydrothermal vent field along the Arctic Mid-Ocean Ridge, close to where 'Loki' was found in marine sediments. Credit: Centre for Geobiology (University of Bergen, Norway) by R.B. Pedersen

Caption: Image of a hydrothermal vent field along the Arctic Mid-Ocean Ridge, close to where ‘Loki’ was found in marine sediments.
Credit: Centre for Geobiology (University of Bergen, Norway) by R.B. Pedersen

Thijs Ettema from the University of Uppsala and his team may have finally found that missing link – they discovered a new archaea from deep marine sediments that could be the closest prokaryote to eukaryotes. The newly discovered organism, Lokiarchaeota, has genes which code for proteins only otherwise found in eukaryotes, which researchers believe to be a ‘starter kit’ for developing more complex cells.

“Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor,” the scientists said.

It’s exactly the kind of thing researchers were hoping to find – something that explains how cells developed from simple to complex. The long standing puzzles of how and why these two groups separated two billion years ago may finally be uncovered.

“The identification of Lokiarchaeota so early in the history of this nascent field suggests that more-closely related archaeal relatives of eukaryotes will soon be discovered. The genomes and cellular features of these relatives may provide a more detailed picture of the most recent common ancestor of eukaryotes and archaea, and may help to resolve the timing of the innovations that are used to define eukaryotes.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.