homehome Home chatchat Notifications


This is the world's longest flexible fiber battery. You can weave and wash it in fabrics

The new battery fiber allows designs and applications that have not been possible before.

Tibi Puiu
August 2, 2022 @ 2:16 pm

share Share

Imagine a ball of yarn that could power flexible electronic devices woven into your T-shirt. That’s exactly what engineers at MIT have done, creating a rechargeable lithium-ion battery in the form of very long fiber. According to the authors of the new study, the fiber might even be used to 3D print batteries in any shape.

A toy submarine powered by the fiber battery coiled around it. Credit: MIT.

The proof of concept is 140 meters long, making it the longest flexible fiber battery thus far. This length is arbitrary though and the researchers claim the battery fiber could still provide power at much longer lengths. “We could definitely do a kilometer-scale length,” Tural Khudiyev, formerly an MIT postdoc and now an assistant professor at the National University of Singapore, said in a statement.

This is not the first time scientists have made batteries in the form of fiber. However, all previous attempts placed the lithium and other key materials outside the fiber, whereas the new system embeds the battery inside the fiber. This protective outside coating is critical for functioning flexible power supplies, providing both stability and waterproofing.

The manufacturing involves using novel battery gels along with a standard fiber-drawing system. All the components of the battery are placed in a large cylinder that is slowly heated just below its melting point. The material is then drawn through a narrow opening, causing pressure that compresses the cylinder to a fraction of its original diameter, while maintaining the original arrangement of the parts. The thickness of the fiber device is only a few hundred microns, much thinner than any previous attempts at a fiber battery.

MIT engineers were inspired to undertake this challenge during their research on wearable electronics. They previously made fibers that embedded LEDs, photosensors, communication systems like WiFi, and other digital systems. These components were flexible enough to be worn by users and washable. However, they all relied on an external power source, which made the wearable products impractical. It was time to turn the battery into a fiber too.

“When we embed the active materials inside the fiber, that means sensitive battery components already have a good sealing,” Khudiyev says, “and all the active materials are very well-integrated, so they don’t change their position during the drawing process.”

The fiber battery continues to power an LED even after it was partially cut. This means it’s free from electrolyte loss and short-circuiting.

To demonstrate the functionality of this proof of concept, the researchers used the fiber battery to power a “Li-Fi” communications system, the kind that uses pulses of light to transmit data rather than radio waves. The Li-Fi includes a microphone, pre-amp, transistor, and diodes. They also demonstrated the integration of LED and Li-ion batteries inside a single fiber, but more than three or four devices could be combined in the same compact space in the future.

“The beauty of our approach is that we can embed multiple devices in an individual fiber, unlike other approaches which need integration of multiple fiber devices,” said MIT postdoc Jung Tae Lee. “When we integrate these fibers containing multi-devices, the aggregate will advance the realization of a compact fabric computer.”

The 140-meter-long battery fiber has a rated energy storage capacity of 123 milliamp-hours — just enough to power a smartwatch or phone. Battery fibers could be woven to produce two-dimensional fabrics like those used for clothing, but could also be used in 3-D printing to create solid objects, such as casings.

In one demonstration, a toy submarine was wrapped with battery fiber and could be powered on. Now, imagine incorporating the power source into the structure of the submarine — that would lower the overall weight and improve the efficiency and range of the device.

After printing, you do not need to add anything else, because everything is already inside the fiber, all the metals, all the active materials. It’s just a one-step printing. That’s a first,” said Khudiyev.

The findings were described in the journal Materials Today.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.