homehome Home chatchat Notifications


LHCb finds a deviation from the Standard Model which may hint at a new particle

The little brother of LHC might be on to something big!

Tibi Puiu
April 19, 2017 @ 4:30 pm

share Share

Physicists working at the Large Hadron Collider beauty (LHCb) reported an intriguing anomaly in the way a particle decayed. Since the way it happened wasn’t predicted by the Standard Model of particle physics, the results hint of the presence of a new particle. The team is cautious, however, since the signal they observed is of limited statistical significance.

large hadron collider

Credit: Flickr

LHCb is one of seven particle physics detector experiments at the Large Hadron Collider, the particle accelerator which is most famous for recently confirming the existence of the Higgs boson, also known as the ‘God particle’ because it’s thought to be responsible for endowing mass to matter. This branch of the LHC specializes in b-hadron interactions or interactions between any particles made of bottom quarks. The latest research reported by CERN focused on following the interactions of B0 mesons, which is a specific type of B mesons.

The B meson is composed of a bottom antiquark and either an up (B+), down (B0), strange (B0s) or charm quark (B+c). According to the Standard Model of particle physics — a framework that describes three of the four known fundamental forces in the universe (the electromagnetic, weak, and strong interactions), as well as classifying all known elementary particles — when you collide B particles at high velocity, Bmesons should decay in a variety of different modes.

The results, however, contradict every other decay mode predicted by the Standard Model. B0 decays into a particle called the kaon, and either a pair of electrons or a pair of muons. Muons and electrons are both leptons, but muons outweigh electrons by a factor of 200. The theory says that the B0 meson should decay into electron and muons with the same probability but LHCb found the decays involving muons occur less often.

Because it violates ‘lepton universality, the only obvious explanation is that some other yet unidentified short-lived particle is present in the loop. The new particle would be neither a proton nor an electron, but something different. Specifically, the data suggests the bottom quark might morph directly into a strange quark — something which is forbidden by the Standard Model — ejecting a new particle in the process called a Z9 boson. It would also pop into existence for a fraction of a second before decaying.

The other explanation is that they’re seeing a glitch in measurements. The statistical significance of the discovery is 2.2 to 2.5 sigma which means that about 1 in 100 times the observation is due to randomness. That might sound like a pretty confident observation but in the realm of particle physics, results are considered unquestionably valid at 5 sigma which implies a one in 3.7 million chance of the effect happening due to randomness. This possibility seems more probable. For instance, last year a team from LHC claimed it may have found a new exotic particle. The observations had an ever higher sigma statistical rating but follow-up observations showed the initial signal was just noise.

Simply put, scientists need to collect way more data in order to clarify the nature of these finds. If it’s indeed a new particle, then the Standard Model will be extended to include it and our physics will become richer. We might have an answer pretty soon seeing how CERN physicists are already analyzing data from a much larger sample collected in ‘Run 2’.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.