homehome Home chatchat Notifications


Chemists use soccer-ball-shaped molecules to form the first one-dimensional gas

University of Nottingham scientists created a one-dimensional gas by trapping krypton atoms in carbon nanotubes, offering new insights into atomic interactions.

Tibi Puiu
January 23, 2024 @ 7:52 pm

share Share

This model shows the arrangement of carbon atoms in fullerene (or 'buckyball') a large molecule made up of 60 carbon atoms.
This model shows the arrangement of carbon atoms in fullerene (or ‘buckyball’) a large molecule made up of 60 carbon atoms. Credit: UCL Chemistry, Wikimedia Commons.

In one of the most amazing feats of microscopic engineering, chemists at the University of Nottingham have trapped atoms of krypton inside a carbon nanotube barely 1/500,000th the diameter of a human hair. In the process, the krypton atoms were lined up in such a tight space that they effectively formed a one-dimensional gas. Confused about what all this means? Let’s clear things up a bit.

A one-dimensional atomic traffic jam

This remarkable state was achieved through the ingenious use of buckyballs, or buckminsterfullerene, to trap and position each atom. Buckyballs, named after the visionary architect Buckminster Fuller, are molecules composed of 60 carbon atoms shaped like a soccer ball.

In this experiment, the buckyballs served as tiny cages for the krypton atoms. The buckyballs were then fused inside the nanotube, either by heating to a searing 1,200 degrees Celsius (2,192 degrees Fahrenheit) or by bombarding them with an electron beam. This fusion released the krypton atoms in a perfect line, like pearls on a string, creating what is effectively a one-dimensional gas.

“As far as we know, this is the first time that chains of noble gas atoms have been imaged directly, leading to the creation of a one-dimensional gas in a solid material,” said Professor Paul Brown, director of the Nanoscale and Microscale Research Centre (nmRC) at the University of Nottingham.

Schematic of the technique used to trap the krypton atoms in a one-dimensional line
Schematic of the technique used to trap the krypton atoms in a one-dimensional line. Credit: University of Nottingham.

In these nano confines, the krypton atoms displayed unique behavior. They couldn’t bypass each other, akin to cars in a traffic jam. Using scanning transmission electron microscope imaging and electron energy loss spectroscopy, the scientists were able to scan across the nano test tube and record spectra of individual atoms confined within.

Why go through all this trouble you might ask? By using krypton, which has a high atomic number, the researchers could track the atoms as moving dots under their transmission electron microscope. This allows for unprecedented real-time observation and study of individual atoms at a scale that was hard to imagine previously. Previously, scientists could only use spectroscopy to track the movements of groups of atoms.

These pairs are held together by van der Waals interaction, which is a mysterious force governing the world of molecules and atoms. This is an exciting innovation, as it allows us to see the van der Waals distance between two atoms in real space. It’s a significant development in the field of chemistry and physics that can help us better understand the workings of atoms and molecules,” said Professor Ute Kaiser.

Yes, technically the krypton atoms are still three-dimensional. Each krypton atom is made of a lot of electrons and a nucleus containing 36 protons and just as many neutrons, depending on the isotope. Protons are made up of even smaller particles known as quarks. But don’t get too caught up in these nano-technicalities. For all practical purposes, the carbon nanotube-trapped atoms represent a one-dimensional state.

“Such strongly correlated atomic systems may exhibit highly unusual heat conductance and diffusion properties. Transmission electron microscopy has played a crucial role in understanding the dynamics of atoms in real-time and direct space,” said Professor Brown.

The findings were reported in the journal ACS Nano.

share Share

Archaeologists Found A Rare 30,000-Year-Old Toolkit That Once Belonged To A Stone Age Hunter

An ancient pouch of stone tools brings us face-to-face with one Gravettian hunter.

Scientists Crack the Secret Behind Jackson Pollock’s Vivid Blue in His Most Famous Drip Painting

Chemistry reveals the true origins of a color that electrified modern art.

China Now Uses 80% Artificial Sand. Here's Why That's A Bigger Deal Than It Sounds

No need to disturb water bodies for sand. We can manufacture it using rocks or mining waste — China is already doing it.

Over 2,250 Environmental Defenders Have Been Killed or Disappeared in the Last 12 Years

The latest tally from Global Witness is a grim ledger. In 2024, at least 146 people were killed or disappeared while defending land, water and forests. That brings the total to at least 2,253 deaths and disappearances since 2012, a steady toll that turns local acts of stewardship into mortal hazards. The organization’s report reads less like […]

After Charlie Kirk’s Murder, Americans Are Asking If Civil Discourse Is Even Possible Anymore

Trying to change someone’s mind can seem futile. But there are approaches to political discourse that still matter, even if they don’t instantly win someone over.

Climate Change May Have Killed More Than 16,000 People in Europe This Summer

Researchers warn that preventable heat-related deaths will continue to rise with continued fossil fuel emissions.

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.