homehome Home chatchat Notifications


New NASA data reveals many of Jupiter's hidden secrets

It's a trove of valuable data, but we're still just scratching the surface.

Mihai Andrei
March 7, 2018 @ 10:39 pm

share Share

A series of four papers using data from NASA’s Juno mission reveals intriguing information about Jupiter, including its gravitational field, its atmospheric flows, its interior composition and its polar cyclones.

Jupiter’s winds are tightly connected to the planet’s gravitational and magnetic fields. Image credits: NASA / ESA / UC Berkeley.

When the Juno mission was successfully launched in 2011, astronomers worldwide were thrilled. The shuttle had the potential to reveal valuable information about Jupiter and its satellites — and that potential has been thoroughly fulfilled. The new papers are the latest in a long chain of remarkable findings about the most massive planet in our solar system, adding some much-needed pieces to the puzzle.

In the first paper, researchers led by Luciano Iess of the Sapienza University of Rome in Italy used Doppler data to study Jupiter’s gravitational field. The data allowed researchers to measure Juno’s velocity down to 0.01mm/s accuracy, even while the shuttle is traveling at speeds of up to 70 km/s in orbit.

Jupiter’s gravitational field is famously asymmetrical, which is unusual for fast-rotating and oblate (squashed at the poles) gas giants. This gravitational asymmetry is caused by hydrogen-rich gas is flowing asymmetrically deep in the planet, and Juno was able to study this process.

This picture of the Jupiter’s South Pole is a mosaic of many images acquired by the Jovian InfraRed Auroral Mapper on board the Juno shuttle. The images have been taken in different times while Juno was leaving the planet after the closest approach. What you see here is the heat (measured as radiance) coming out from the planet through the clouds: yellow indicates the presence of thinner clouds and dark red the thicker ones.
Credit: NASA/SWRI/JPL/ASI/INAF/IAPS

Two other papers looked at different physical parameters of Jupiter. A team led by Yohai Kaspi of the Weizmann Institute of Science in Israel used another asymmetry, that of Jupiter’s magnetic field, to calculate the depth of Jupiter’s atmosphere, finding that the mass of the atmosphere amounts for about 1% of the planet’s total mass. Meanwhile, Tristan Guillot and co-authors report that at depths greater than 3,000 kilometers below cloud level, Jupiter’s deep interior is made up of a fluid mixture of hydrogen and helium, rotating as a solid body. They also found that the speed of the above-mentioned winds extend some 3,000 km beneath the cloud level, dropping in intensity with altitude.

Even with all this information, we’re still just barely scratching the surface of what we know about Jupiter.

“We’re at the beginning of dissecting Jupiter,” says Juno mission leader Scott Bolton of the Southwest Research Institute in San Antonio.

However, there’s also a downside to the Juno mission: it offered so much valuable data that it’s gonna be very hard to top it. In an accompanying News&Views article, planetary scientist Jonathan Fortney of the University of California Santa Cruz praised the work, writing:

“The work demonstrated here is extremely robust,” Fortney wrote in his editorial. “I do not foresee another leap in knowledge on Jupiter’s interior after the Juno mission ends, unless astronomers are able to study the planet’s internal oscillations, as has been done for the Sun.”

Fortunately, Juno will remain in orbit for at least a couple of years, so we’ll certainly have more to learn about Jupiter.

Journal References:

  1. Measurement of Jupiter’s asymmetric gravity field. Corresponding Author: Luciano Iess (Sapienza Università di Roma, Rome, Italy). DOI: 10.1038/nature25776. http://nature.com/articles/doi:10.1038/nature25776
  2. Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Corresponding Author: Yohai Kaspi (Weizmann Institute of Science, Rehovot, Israel). DOI: 10.1038/nature25793. http://nature.com/articles/doi:10.1038/nature25793
  3. A suppression of differential rotation in Jupiter’s deep interior. Corresponding Author: Tristan Guillot (Université Côte d’Azur, Nice, France). DOI: 10.1038/nature25775. http://nature.com/articles/doi:10.1038/nature25775
  4. Clusters of cyclones encircling Jupiter’s poles. Corresponding Author: Alberto Adriani (INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy). DOI: 10.1038/nature25491. http://nature.com/articles/doi:10.1038/nature25491

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.