homehome Home chatchat Notifications


She lost the Nobel Prize to her supervisor in 1974 -- now, she got a $3 million physics prize, and donated all of it

The pioneering physicist gave all the prize money away.

Tibi Puiu
September 7, 2018 @ 4:36 pm

share Share

Dame Susan Jocelyn Bell Burnell in 1967, the year she found the first evidence of a pulsar. Credit: Wikimedia Commons.

Dame Susan Jocelyn Bell Burnell in 1967, the year she found the first evidence of a pulsar. Credit: Wikimedia Commons.

While she was still a graduate student at the University of Cambridge studying strange far-away objects in distant galaxies, Jocelyn Bell Burnell came across something peculiar. A squiggle periodically appeared on the 96-feet-long chart paper etched in red ink, indicating the presence of mysterious, pulsating radio waves.

She extracted more data but the blip in the charts disappeared — only to oddly return a month later.

When Burnell showed the data to her supervisor, Antony Hewish,  the professor dismissed the readings as some artificial radio interference. For the young student, this came as a strong hit. She who was having a row with imposter syndrome — the belief that you’re an inadequate and incompetent failure, despite evidence that indicates you’re skilled and quite successful — and wanted to prove herself. So nevertheless, she continued to pore through the data.

Burnell was convinced the anomaly was not indicative of interference because the radio waves were generated by something moving at the same speed as the stars. The source had to be in space somewhere. She was right.

Today, we now know that these sort of sources are, in fact, dense, rapidly spinning neutron stars that emit radiations. These objects are called pulsars and are considered one of the greatest astronomical achievements of the 20th century. Pulsars have helped scientists detect exoplanets, design better spacecraft navigation, or test Einstein’s theory of general relativity.

The discovery was so important that it was awarded the 1974 Nobel Prize. But it wasn’t Burnell who received it — the distinction went to Hewish, the professor who dismissed her finding.

“[I]n those days students weren’t recognized by the committee,” Burnell said in 2009, apparently not very fazed by the lack of recognition for her hard work.

It was 1967 when Burnell first noticed the blips in her radio telescope charts. Now, more than fifty years later, her work has been awarded an important recognition: the Special Breakthrough Prize in Fundamental Physics — and a check for $3 million.

The awards were founded in 2013 by science and technology gurus including Mark Zuckerberg, Anne Wojcicki (co-founder and CEO of personal genomics company 23andMe), and Jack Ma, founder of the Alibaba Group. They’re the largest science prizes in the world, financially speaking, dwarfing the Nobels by a large margin.

“Professor Bell Burnell thoroughly deserves this recognition. Her curiosity, diligent observations and rigorous analysis revealed some of the most interesting and mysterious objects in the Universe,” said Yuri Milner, one of the founders of the Breakthrough Prizes, in a statement.

Laudably, Burnell chose to donate her prize money to the UK Institute of Physics, which will be used to fund grants for physics students from under-represented groups.

“I don’t want or need the money myself and it seemed to me that this was perhaps the best use I could put to it,” she told the BBC.

“Jocelyn Bell-Burnell’s work on the discovery of Pulsars really did contribute to a major breakthrough in our understanding of the universe.  Her generous decision to donate the prize money to bringing more women, under-represented ethnic minorities and refugees into the world of physics, can hopefully help to increase the flow of breakthrough moments in the future,” Richard Catlow, Vice-President of the Royal Society, said in a statement.

And in the same good spirit, the accomplished physicist really never held a grudge for getting snubbed the Nobel. In fact, she saw any good things out of it.

“I feel I’ve done very well out of not getting a Nobel prize,” she told The Guardian. “If you get a Nobel prize you have this fantastic week and then nobody gives you anything else. If you don’t get a Nobel prize you get everything that moves. Almost every year there’s been some sort of party because I’ve got another award. That’s much more fun.”

share Share

Neanderthals Turned Cave Lion Bone into a 130,000-Year-Old 'Swiss Army Knife'

130,000-year-old discovery reveals a new side to our ancient cousins.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

New material mimics plastic’s versatility but biodegrades like a leaf.

Researchers Recreate the Quintessentially Roman Fish Sauce

Would you like some garum with that?

Why Warmer Countries Have Louder Languages

Language families in hotter regions evolved with more resonant, sonorous words, researchers find.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.